Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b87761f8
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b87761f8
编写于
6月 28, 2020
作者:
P
pangyoki
提交者:
GitHub
6月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pretrain processing into dygraph bert model, test=release/1.8 (#4718)
上级
e4ad047a
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
424 addition
and
8 deletion
+424
-8
dygraph/bert/model/bert.py
dygraph/bert/model/bert.py
+8
-8
dygraph/bert/run_train_multi_gpu.sh
dygraph/bert/run_train_multi_gpu.sh
+35
-0
dygraph/bert/run_train_single_gpu.sh
dygraph/bert/run_train_single_gpu.sh
+33
-0
dygraph/bert/train.py
dygraph/bert/train.py
+348
-0
未找到文件。
dygraph/bert/model/bert.py
浏览文件 @
b87761f8
...
...
@@ -230,26 +230,25 @@ class PretrainModelLayer(Layer):
enc_output
,
next_sent_feat
=
self
.
bert_layer
(
src_ids
,
position_ids
,
sentence_ids
,
input_mask
)
reshaped_emb_out
=
fluid
.
layers
.
reshape
(
x
=
enc_output
,
shape
=
[
-
1
,
self
.
_emb_size
])
mask_feat
=
fluid
.
layers
.
gather
(
input
=
reshaped_emb_out
,
index
=
mask_pos
)
mask_trans_feat
=
self
.
pooled_fc
(
mask_feat
)
mask_trans_feat
=
self
.
pre_process_layer
(
None
,
mask_trans_feat
,
"n"
,
self
.
_prepostprocess_dropout
)
mask_trans_feat
=
self
.
pre_process_layer
(
mask_trans_feat
)
if
self
.
_weight_sharing
:
fc_out
=
fluid
.
layers
.
matmul
(
x
=
mask_trans_feat
,
y
=
self
.
bert_layer
.
_src_emb
.
_w
,
y
=
self
.
bert_layer
.
_src_emb
.
weight
,
transpose_y
=
True
)
fc_out
+=
self
.
fc_create_params
else
:
fc_out
=
self
.
out_fc
(
mask_trans_feat
)
mask_lm_loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
fc_out
,
label
=
mask_label
)
mask_lm_loss
,
mask_lm_softmax
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
fc_out
,
label
=
mask_label
,
return_softmax
=
True
)
mean_mask_lm_loss
=
fluid
.
layers
.
mean
(
mask_lm_loss
)
next_sent_fc_out
=
self
.
next_sent_fc
(
next_sent_feat
)
...
...
@@ -257,10 +256,11 @@ class PretrainModelLayer(Layer):
next_sent_loss
,
next_sent_softmax
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
next_sent_fc_out
,
label
=
labels
,
return_softmax
=
True
)
lm_acc
=
fluid
.
layers
.
accuracy
(
input
=
mask_lm_softmax
,
label
=
mask_label
)
next_sent_acc
=
fluid
.
layers
.
accuracy
(
input
=
next_sent_softmax
,
label
=
labels
)
mean_next_sent_loss
=
fluid
.
layers
.
mean
(
next_sent_loss
)
loss
=
mean_next_sent_loss
+
mean_mask_lm_loss
return
next_sent_acc
,
mean_mask_lm_loss
,
loss
return
lm_acc
,
next_sent_acc
,
mean_mask_lm_loss
,
loss
dygraph/bert/run_train_multi_gpu.sh
0 → 100755
浏览文件 @
b87761f8
#!/bin/bash
# pretrain config
SAVE_STEPS
=
10000
BATCH_SIZE
=
4096
LR_RATE
=
1e-4
WEIGHT_DECAY
=
0.01
MAX_LEN
=
512
TRAIN_DATA_DIR
=
data/train
VALIDATION_DATA_DIR
=
data/validation
CONFIG_PATH
=
data/demo_config/bert_config.json
VOCAB_PATH
=
data/demo_config/vocab.txt
# Change your train arguments:
GPU_TO_USE
=
0,1
# start pretrain
python
-m
paddle.distributed.launch
--selected_gpus
=
$GPU_TO_USE
--log_dir
./pretrain_log ./train.py
${
is_distributed
}
\
--use_cuda
true
\
--use_data_parallel
true
\
--weight_sharing
true
\
--batch_size
${
BATCH_SIZE
}
\
--data_dir
${
TRAIN_DATA_DIR
}
\
--validation_set_dir
${
VALIDATION_DATA_DIR
}
\
--bert_config_path
${
CONFIG_PATH
}
\
--vocab_path
${
VOCAB_PATH
}
\
--generate_neg_sample
true
\
--checkpoints
./output
\
--save_steps
${
SAVE_STEPS
}
\
--learning_rate
${
LR_RATE
}
\
--weight_decay
${
WEIGHT_DECAY
:-
0
}
\
--max_seq_len
${
MAX_LEN
}
\
--skip_steps
20
\
--validation_steps
1000
\
--num_iteration_per_drop_scope
10
\
--use_fp16
false
\
--verbose
true
dygraph/bert/run_train_single_gpu.sh
0 → 100755
浏览文件 @
b87761f8
#!/bin/bash
# pretrain config
SAVE_STEPS
=
100
BATCH_SIZE
=
4096
LR_RATE
=
1e-4
WEIGHT_DECAY
=
0.01
MAX_LEN
=
512
TRAIN_DATA_DIR
=
data/train
VALIDATION_DATA_DIR
=
data/validation
CONFIG_PATH
=
data/demo_config/bert_config.json
VOCAB_PATH
=
data/demo_config/vocab.txt
# Change your train arguments:
# start pretrain
python
-u
./train.py
--use_cuda
true
\
--use_data_parallel
false
\
--weight_sharing
true
\
--batch_size
${
BATCH_SIZE
}
\
--data_dir
${
TRAIN_DATA_DIR
}
\
--validation_set_dir
${
VALIDATION_DATA_DIR
}
\
--bert_config_path
${
CONFIG_PATH
}
\
--vocab_path
${
VOCAB_PATH
}
\
--generate_neg_sample
true
\
--checkpoints
./output
\
--save_steps
${
SAVE_STEPS
}
\
--learning_rate
${
LR_RATE
}
\
--weight_decay
${
WEIGHT_DECAY
:-
0
}
\
--max_seq_len
${
MAX_LEN
}
\
--skip_steps
20
\
--validation_steps
100
\
--num_iteration_per_drop_scope
10
\
--use_fp16
false
\
--verbose
true
dygraph/bert/train.py
0 → 100644
浏览文件 @
b87761f8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining in Paddle Dygraph Mode"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
six
import
sys
if
six
.
PY2
:
reload
(
sys
)
sys
.
setdefaultencoding
(
'utf8'
)
import
os
import
time
import
argparse
import
numpy
as
np
import
multiprocessing
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
to_variable
from
reader.pretraining
import
DataReader
from
model.bert
import
PretrainModelLayer
,
BertConfig
from
optimization
import
Optimizer
from
utils.args
import
ArgumentGroup
,
print_arguments
,
check_cuda
from
utils.init
import
init_checkpoint
,
init_pretraining_params
,
init_from_static_model
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
model_g
=
ArgumentGroup
(
parser
,
"model"
,
"model configuration and paths."
)
model_g
.
add_arg
(
"bert_config_path"
,
str
,
"./config/bert_config.json"
,
"Path to the json file for bert model config."
)
model_g
.
add_arg
(
"init_checkpoint"
,
str
,
None
,
"Init checkpoint to resume training from."
)
model_g
.
add_arg
(
"checkpoints"
,
str
,
"checkpoints"
,
"Path to save checkpoints."
)
model_g
.
add_arg
(
"weight_sharing"
,
bool
,
True
,
"If set, share weights between word embedding and masked lm."
)
model_g
.
add_arg
(
"generate_neg_sample"
,
bool
,
True
,
"If set, randomly generate negtive samples by positive samples."
)
train_g
=
ArgumentGroup
(
parser
,
"training"
,
"training options."
)
train_g
.
add_arg
(
"epoch"
,
int
,
100
,
"Number of epoches for training."
)
train_g
.
add_arg
(
"learning_rate"
,
float
,
0.0001
,
"Learning rate used to train with warmup."
)
train_g
.
add_arg
(
"lr_scheduler"
,
str
,
"linear_warmup_decay"
,
"scheduler of learning rate."
,
choices
=
[
'linear_warmup_decay'
,
'noam_decay'
])
train_g
.
add_arg
(
"weight_decay"
,
float
,
0.01
,
"Weight decay rate for L2 regularizer."
)
train_g
.
add_arg
(
"num_train_steps"
,
int
,
1000000
,
"Total steps to perform pretraining."
)
train_g
.
add_arg
(
"warmup_steps"
,
int
,
4000
,
"Total steps to perform warmup when pretraining."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
10000
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"validation_steps"
,
int
,
1000
,
"The steps interval to evaluate model performance."
)
train_g
.
add_arg
(
"use_fp16"
,
bool
,
False
,
"Whether to use fp16 mixed precision training."
)
train_g
.
add_arg
(
"use_dynamic_loss_scaling"
,
bool
,
True
,
"Whether to use dynamic loss scaling in mixed precision training."
)
train_g
.
add_arg
(
"init_loss_scaling"
,
float
,
2
**
32
,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled."
)
train_g
.
add_arg
(
"loss_scaling"
,
float
,
1.0
,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled."
)
train_g
.
add_arg
(
"incr_every_n_steps"
,
int
,
1000
,
"Increases loss scaling every n consecutive."
)
train_g
.
add_arg
(
"decr_every_n_nan_or_inf"
,
int
,
2
,
"Decreases loss scaling every n accumulated steps with nan or inf gradients."
)
train_g
.
add_arg
(
"incr_ratio"
,
float
,
2.0
,
"The multiplier to use when increasing the loss scaling."
)
train_g
.
add_arg
(
"decr_ratio"
,
float
,
0.8
,
"The less-than-one-multiplier to use when decreasing."
)
log_g
=
ArgumentGroup
(
parser
,
"logging"
,
"logging related."
)
log_g
.
add_arg
(
"skip_steps"
,
int
,
10
,
"The steps interval to print loss."
)
log_g
.
add_arg
(
"verbose"
,
bool
,
False
,
"Whether to output verbose log."
)
data_g
=
ArgumentGroup
(
parser
,
"data"
,
"Data paths, vocab paths and data processing options"
)
data_g
.
add_arg
(
"data_dir"
,
str
,
"./data/train/"
,
"Path to training data."
)
data_g
.
add_arg
(
"validation_set_dir"
,
str
,
"./data/validation/"
,
"Path to validation data."
)
data_g
.
add_arg
(
"test_set_dir"
,
str
,
None
,
"Path to test data."
)
data_g
.
add_arg
(
"vocab_path"
,
str
,
"./config/vocab.txt"
,
"Vocabulary path."
)
data_g
.
add_arg
(
"max_seq_len"
,
int
,
512
,
"Tokens' number of the longest seqence allowed."
)
data_g
.
add_arg
(
"batch_size"
,
int
,
8192
,
"The total number of examples in one batch for training, see also --in_tokens."
)
data_g
.
add_arg
(
"in_tokens"
,
bool
,
True
,
"If set, the batch size will be the maximum number of tokens in one batch. "
"Otherwise, it will be the maximum number of examples in one batch."
)
run_type_g
=
ArgumentGroup
(
parser
,
"run_type"
,
"running type options."
)
run_type_g
.
add_arg
(
"is_distributed"
,
bool
,
False
,
"If set, then start distributed training."
)
run_type_g
.
add_arg
(
"use_cuda"
,
bool
,
True
,
"If set, use GPU for training."
)
run_type_g
.
add_arg
(
"use_fast_executor"
,
bool
,
False
,
"If set, use fast parallel executor (in experiment)."
)
run_type_g
.
add_arg
(
"num_iteration_per_drop_scope"
,
int
,
1
,
"Ihe iteration intervals to clean up temporary variables."
)
run_type_g
.
add_arg
(
"do_test"
,
bool
,
False
,
"Whether to perform evaluation on test data set."
)
run_type_g
.
add_arg
(
"use_data_parallel"
,
bool
,
False
,
"The flag indicating whether to shuffle instances in each pass."
)
args
=
parser
.
parse_args
()
# yapf: enable.
def
create_data
(
batch
):
"""
convert data to variable
"""
src_ids
=
to_variable
(
batch
[
0
],
"src_ids"
)
position_ids
=
to_variable
(
batch
[
1
],
"position_ids"
)
sentence_ids
=
to_variable
(
batch
[
2
],
"sentence_ids"
)
input_mask
=
to_variable
(
batch
[
3
],
"input_mask"
)
mask_label
=
to_variable
(
batch
[
4
],
"mask_label"
)
mask_pos
=
to_variable
(
batch
[
5
],
"mask_pos"
)
labels
=
to_variable
(
batch
[
6
],
"labels"
)
labels
.
stop_gradient
=
True
return
src_ids
,
position_ids
,
sentence_ids
,
input_mask
,
mask_label
,
mask_pos
,
labels
def
predict_wrapper
(
pretrained_bert
,
data_loader
=
None
):
cost
=
0
lm_cost
=
0
lm_acc
=
0
acc
=
0
steps
=
0
time_begin
=
time
.
time
()
try
:
for
batch
in
data_loader
():
steps
+=
1
(
src_ids
,
pos_ids
,
sent_ids
,
input_mask
,
mask_label
,
mask_pos
,
labels
)
=
create_data
(
batch
)
each_lm_acc
,
each_next_acc
,
each_mask_lm_cost
,
each_total_cost
=
pretrained_bert
(
src_ids
,
pos_ids
,
sent_ids
,
input_mask
,
mask_label
,
mask_pos
,
labels
)
lm_acc
+=
each_lm_acc
.
numpy
()
acc
+=
each_next_acc
.
numpy
()
lm_cost
+=
each_mask_lm_cost
.
numpy
()
cost
+=
each_total_cost
.
numpy
()
except
fluid
.
core
.
EOFException
:
data_loader
.
reset
()
used_time
=
time
.
time
()
-
time_begin
return
cost
,
lm_cost
,
lm_acc
,
acc
,
steps
,
(
steps
/
used_time
)
def
train
(
args
):
print
(
"pretraining start"
)
bert_config
=
BertConfig
(
args
.
bert_config_path
)
bert_config
.
print_config
()
if
args
.
use_cuda
:
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
)
dev_count
=
fluid
.
core
.
get_cuda_device_count
()
else
:
place
=
fluid
.
CPUPlace
()
dev_count
=
int
(
os
.
environ
.
get
(
"CPU_NUM"
,
multiprocessing
.
cpu_count
()))
trainer_count
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
data_reader
=
DataReader
(
data_dir
=
args
.
data_dir
,
batch_size
=
args
.
batch_size
,
in_tokens
=
args
.
in_tokens
,
vocab_path
=
args
.
vocab_path
,
voc_size
=
bert_config
[
'vocab_size'
],
epoch
=
args
.
epoch
,
max_seq_len
=
args
.
max_seq_len
,
generate_neg_sample
=
args
.
generate_neg_sample
)
batch_generator
=
data_reader
.
data_generator
()
if
args
.
validation_set_dir
and
args
.
validation_set_dir
!=
""
:
val_data_reader
=
DataReader
(
data_dir
=
args
.
validation_set_dir
,
batch_size
=
args
.
batch_size
,
in_tokens
=
args
.
in_tokens
,
vocab_path
=
args
.
vocab_path
,
voc_size
=
bert_config
[
'vocab_size'
],
shuffle_files
=
False
,
epoch
=
1
,
max_seq_len
=
args
.
max_seq_len
,
is_test
=
True
)
val_batch_generator
=
val_data_reader
.
data_generator
()
with
fluid
.
dygraph
.
guard
(
place
):
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
# define data loader
train_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
50
)
train_data_loader
.
set_batch_generator
(
batch_generator
,
places
=
place
)
if
args
.
validation_set_dir
and
args
.
validation_set_dir
!=
""
:
val_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
50
)
val_data_loader
.
set_batch_generator
(
val_batch_generator
,
places
=
place
)
# define model
pretrained_bert
=
PretrainModelLayer
(
config
=
bert_config
,
return_pooled_out
=
True
,
weight_sharing
=
args
.
weight_sharing
,
use_fp16
=
args
.
use_fp16
)
optimizer
=
Optimizer
(
warmup_steps
=
args
.
warmup_steps
,
num_train_steps
=
args
.
num_train_steps
,
learning_rate
=
args
.
learning_rate
,
model_cls
=
pretrained_bert
,
weight_decay
=
args
.
weight_decay
,
scheduler
=
args
.
lr_scheduler
,
loss_scaling
=
args
.
loss_scaling
,
parameter_list
=
pretrained_bert
.
parameters
())
## init from some checkpoint, to resume the previous training
if
args
.
init_checkpoint
and
args
.
init_checkpoint
!=
""
:
model_dict
,
opt_dict
=
fluid
.
load_dygraph
(
os
.
path
.
join
(
args
.
init_checkpoint
,
"pretrained_bert"
))
pretrained_bert
.
load_dict
(
model_dict
)
optimizer
.
optimizer
.
set_dict
(
opt_dict
)
if
args
.
use_data_parallel
:
pretrained_bert
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
pretrained_bert
,
strategy
)
batch_generator
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
batch_generator
)
steps
=
0
time_begin
=
time
.
time
()
time_begin_fixed
=
time_begin
# train_loop
while
steps
<
args
.
num_train_steps
:
try
:
for
batch
in
batch_generator
():
steps
+=
1
(
src_ids
,
pos_ids
,
sent_ids
,
input_mask
,
mask_label
,
mask_pos
,
labels
)
=
create_data
(
batch
)
lm_acc
,
next_acc
,
mask_lm_cost
,
total_cost
=
pretrained_bert
(
src_ids
,
pos_ids
,
sent_ids
,
input_mask
,
mask_label
,
mask_pos
,
labels
)
optimizer
.
optimization
(
total_cost
,
use_data_parallel
=
args
.
use_data_parallel
,
model
=
pretrained_bert
)
pretrained_bert
.
clear_gradients
()
time_end
=
time
.
time
()
used_time
=
time_end
-
time_begin
epoch
,
current_file_index
,
total_file
,
current_file
=
data_reader
.
get_progress
()
if
steps
%
args
.
skip_steps
==
0
:
print
(
"epoch: %d, progress: %d/%d, step: %d, loss: %f, "
"ppl: %f, lm_acc: %f, next_sent_acc: %f, speed: %f steps/s, file: %s"
%
(
epoch
,
current_file_index
,
total_file
,
steps
,
total_cost
.
numpy
(),
np
.
exp
(
mask_lm_cost
.
numpy
()),
lm_acc
.
numpy
(),
next_acc
.
numpy
(),
args
.
skip_steps
/
used_time
,
current_file
))
time_begin
=
time
.
time
()
if
steps
!=
0
and
steps
%
args
.
save_steps
==
0
and
fluid
.
dygraph
.
parallel
.
Env
().
local_rank
==
0
:
save_path
=
os
.
path
.
join
(
args
.
checkpoints
,
"step_"
+
str
(
steps
))
if
not
os
.
path
.
exists
(
save_path
):
os
.
makedirs
(
save_path
)
fluid
.
save_dygraph
(
pretrained_bert
.
state_dict
(),
os
.
path
.
join
(
save_path
,
"pretrained_bert"
))
fluid
.
save_dygraph
(
optimizer
.
optimizer
.
state_dict
(),
os
.
path
.
join
(
save_path
,
"pretrained_bert"
))
if
args
.
validation_set_dir
and
steps
%
args
.
validation_steps
==
0
:
pretrained_bert
.
eval
()
vali_cost
,
vali_lm_cost
,
vali_lm_acc
,
vali_acc
,
vali_steps
,
vali_speed
=
predict_wrapper
(
pretrained_bert
,
val_data_loader
)
print
(
"[validation_set] epoch: %d, step: %d, "
"loss: %f, global ppl: %f, batch-averaged ppl: %f, "
"lm_acc: %f, next_sent_acc: %f, speed: %f steps/s"
%
(
epoch
,
steps
,
np
.
mean
(
np
.
array
(
vali_cost
)
/
vali_steps
),
np
.
exp
(
np
.
mean
(
np
.
array
(
vali_lm_cost
)
/
vali_steps
)),
np
.
mean
(
np
.
exp
(
np
.
array
(
vali_lm_cost
)
/
vali_steps
)),
np
.
mean
(
np
.
array
(
vali_lm_acc
)
/
vali_steps
),
np
.
mean
(
np
.
array
(
vali_acc
)
/
vali_steps
),
vali_speed
))
pretrained_bert
.
train
()
if
fluid
.
dygraph
.
parallel
.
Env
().
local_rank
==
0
:
save_path
=
os
.
path
.
join
(
args
.
checkpoints
,
"final"
)
fluid
.
save_dygraph
(
pretrained_bert
.
state_dict
(),
os
.
path
.
join
(
save_path
,
"pretrained_bert"
))
fluid
.
save_dygraph
(
optimizer
.
optimizer
.
state_dict
(),
os
.
path
.
join
(
save_path
,
"pretrained_bert"
))
except
fluid
.
core
.
EOFException
:
train_data_loader
.
reset
()
break
def
test
(
args
):
bert_config
=
BertConfig
(
args
.
bert_config_path
)
bert_config
.
print_config
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_cuda
==
True
else
fluid
.
CPUPlace
()
test_data_reader
=
DataReader
(
data_dir
=
args
.
test_set_dir
,
batch_size
=
args
.
batch_size
,
in_tokens
=
args
.
in_tokens
,
vocab_path
=
args
.
vocab_path
,
voc_size
=
bert_config
[
'vocab_size'
],
shuffle_files
=
False
,
epoch
=
1
,
max_seq_len
=
args
.
max_seq_len
,
is_test
=
True
)
test_batch_generator
=
test_data_reader
.
data_generator
()
with
fluid
.
dygraph
.
guard
(
place
):
# define data loader
test_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
50
)
test_data_loader
.
set_batch_generator
(
test_batch_generator
,
places
=
place
)
# define model
pretrained_bert
=
PretrainModelLayer
(
config
=
bert_config
,
return_pooled_out
=
True
,
weight_sharing
=
args
.
weight_sharing
,
use_fp16
=
args
.
use_fp16
)
# restore the model
save_path
=
os
.
path
.
join
(
args
.
init_checkpoint
,
"pretrained_bert"
)
print
(
"Load params from %s"
%
save_path
)
model_dict
,
_
=
fluid
.
load_dygraph
(
save_path
)
pretrained_bert
.
load_dict
(
model_dict
)
pretrained_bert
.
eval
()
cost
,
lm_cost
,
lm_acc
,
acc
,
steps
,
speed
=
predict_wrapper
(
pretrained_bert
,
test_data_loader
)
print
(
"[test_set] loss: %f, global ppl: %f, lm_acc: %f, next_sent_acc: %f, speed: %f steps/s"
%
(
np
.
mean
(
np
.
array
(
cost
)
/
steps
),
np
.
exp
(
np
.
mean
(
np
.
array
(
lm_cost
)
/
steps
)),
np
.
mean
(
np
.
array
(
lm_acc
)
/
steps
),
np
.
mean
(
np
.
array
(
acc
)
/
steps
),
speed
))
if
__name__
==
'__main__'
:
print_arguments
(
args
)
check_cuda
(
args
.
use_cuda
)
if
args
.
do_test
:
test
(
args
)
else
:
train
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录