Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
a7ddb108
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a7ddb108
编写于
5月 23, 2017
作者:
L
LiuYongFeng
提交者:
GitHub
5月 23, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update README.md
上级
ed7c7c86
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
2 addition
and
2 deletion
+2
-2
README.md
README.md
+2
-2
未找到文件。
README.md
浏览文件 @
a7ddb108
...
...
@@ -72,11 +72,11 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式
-
**介绍**
文本分类是自然语言处理领域最基础的任务之一,深度学习方法能够免除复杂的特征工程,直接使用原始文本作为输入,数据驱动地最优化分类准确率。我们以情感分类任务为例,提供了基于DNN的非序列文本分类模型,基CNN和LSTM的序列模型供大家学习和使用。
文本分类是自然语言处理领域最基础的任务之一,深度学习方法能够免除复杂的特征工程,直接使用原始文本作为输入,数据驱动地最优化分类准确率。我们以情感分类任务为例,提供了基于DNN的非序列文本分类模型,基
于
CNN和LSTM的序列模型供大家学习和使用。
-
**应用领域**
分类是机器学习基础任务之一。文本分类模型在SPAM检测,文本打标签,文本意图识别,文章质量评估,色情暴力文章识别,评论情绪识别,广告物料风险控制等领域都有着广泛
地
应用。
分类是机器学习基础任务之一。文本分类模型在SPAM检测,文本打标签,文本意图识别,文章质量评估,色情暴力文章识别,评论情绪识别,广告物料风险控制等领域都有着广泛
的
应用。
-
**模型配置说明**
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录