Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
a66a83f7
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a66a83f7
编写于
8月 09, 2018
作者:
G
Guo Sheng
提交者:
GitHub
8月 09, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1120 from guoshengCS/add-ce-for-transformer
Add ce for transformer
上级
8f61de12
23c55953
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
134 addition
and
10 deletion
+134
-10
fluid/neural_machine_translation/transformer/.run_ce.sh
fluid/neural_machine_translation/transformer/.run_ce.sh
+27
-0
fluid/neural_machine_translation/transformer/_ce.py
fluid/neural_machine_translation/transformer/_ce.py
+60
-0
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+2
-0
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+11
-3
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+34
-7
未找到文件。
fluid/neural_machine_translation/transformer/.run_ce.sh
0 → 100644
浏览文件 @
a66a83f7
#!/bin/bash
DATA_PATH
=
$HOME
/.cache/paddle/dataset/wmt16
if
[
!
-d
$DATA_PATH
]
;
then
python
-c
'import paddle;paddle.dataset.wmt16.train(10000, 10000, "en")'
\
'().next()'
tar
-zxf
$DATA_PATH
/wmt16.tar.gz
-C
$DATA_PATH
fi
train
(){
python
-u
train.py
\
--src_vocab_fpath
$DATA_PATH
/en_10000.dict
\
--trg_vocab_fpath
$DATA_PATH
/de_10000.dict
\
--special_token
'<s>'
'<e>'
'<unk>'
\
--train_file_pattern
$DATA_PATH
/wmt16/train
\
--val_file_pattern
$DATA_PATH
/wmt16/val
\
--use_token_batch
True
\
--batch_size
2048
\
--sort_type
pool
\
--pool_size
10000
\
--enable_ce
True
\
weight_sharing False
\
pass_num 20
\
dropout_seed 10
}
train | python _ce.py
fluid/neural_machine_translation/transformer/_ce.py
0 → 100644
浏览文件 @
a66a83f7
####this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
,
DurationKpi
,
AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
0
,
actived
=
True
)
test_cost_kpi
=
CostKpi
(
'test_cost'
,
0.005
,
0
,
actived
=
True
)
train_duration_kpi
=
DurationKpi
(
'train_duration'
,
0.06
,
0
,
actived
=
True
)
tracking_kpis
=
[
train_cost_kpi
,
test_cost_kpi
,
train_duration_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
print
(
"-----%s"
%
fs
)
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
print
(
"*****"
)
print
(
log
)
print
(
"****"
)
log_to_ce
(
log
)
\ No newline at end of file
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
a66a83f7
...
...
@@ -81,6 +81,8 @@ class ModelHyperParams(object):
n_layer
=
6
# dropout rate used by all dropout layers.
dropout
=
0.1
# random seed used in dropout for CE.
dropout_seed
=
None
# the flag indicating whether to share embedding and softmax weights.
# vocabularies in source and target should be same for weight sharing.
weight_sharing
=
True
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
a66a83f7
...
...
@@ -111,7 +111,10 @@ def multi_head_attention(queries,
x
=
weights
,
shape
=
product
.
shape
,
actual_shape
=
post_softmax_shape
)
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
weights
,
dropout_prob
=
dropout_rate
,
seed
=
ModelHyperParams
.
dropout_seed
,
is_test
=
False
)
out
=
layers
.
matmul
(
weights
,
v
)
return
out
...
...
@@ -171,7 +174,10 @@ def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
elif
cmd
==
"d"
:
# add dropout
if
dropout_rate
:
out
=
layers
.
dropout
(
out
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
out
,
dropout_prob
=
dropout_rate
,
seed
=
ModelHyperParams
.
dropout_seed
,
is_test
=
False
)
return
out
...
...
@@ -211,7 +217,9 @@ def prepare_encoder(src_word,
shape
=
[
batch_size
,
seq_len
,
src_emb_dim
],
actual_shape
=
src_data_shape
)
return
layers
.
dropout
(
enc_input
,
dropout_prob
=
dropout_rate
,
enc_input
,
dropout_prob
=
dropout_rate
,
seed
=
ModelHyperParams
.
dropout_seed
,
is_test
=
False
)
if
dropout_rate
else
enc_input
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
a66a83f7
...
...
@@ -103,6 +103,12 @@ def parse_args():
help
=
"The device type."
)
parser
.
add_argument
(
'--sync'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"sync mode."
)
parser
.
add_argument
(
"--enable_ce"
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"The flag indicating whether to run the task "
"for continuous evaluation."
)
args
=
parser
.
parse_args
()
# Append args related to dict
...
...
@@ -382,6 +388,12 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
data_input_names
,
util_input_names
,
sum_cost
,
token_num
)
# the best cross-entropy value with label smoothing
loss_normalizer
=
-
((
1.
-
TrainTaskConfig
.
label_smooth_eps
)
*
np
.
log
(
(
1.
-
TrainTaskConfig
.
label_smooth_eps
))
+
TrainTaskConfig
.
label_smooth_eps
*
np
.
log
(
TrainTaskConfig
.
label_smooth_eps
/
(
ModelHyperParams
.
trg_vocab_size
-
1
)
+
1e-20
))
init
=
False
for
pass_id
in
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
...
...
@@ -421,19 +433,27 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
)
# sum the cost from multi-devices
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
print
(
"epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f"
%
(
pass_id
,
batch_id
,
total_sum_cost
,
total_avg_cost
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
print
(
"epoch: %d, batch: %d, avg loss: %f, normalized loss: %f,"
" ppl: %f"
%
(
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
if
batch_id
>
0
and
batch_id
%
1000
==
0
:
fluid
.
io
.
save_persistables
(
exe
,
os
.
path
.
join
(
TrainTaskConfig
.
ckpt_dir
,
"latest.checkpoint"
))
init
=
True
time_consumed
=
time
.
time
()
-
pass_start_time
# Validate and save the model for inference.
print
(
"epoch: %d, "
%
pass_id
+
(
"val avg loss: %f, val ppl: %f, "
%
test
()
if
args
.
val_file_pattern
is
not
None
else
""
)
+
"consumed %fs"
%
(
time
.
time
()
-
pass_start_time
))
if
args
.
val_file_pattern
is
not
None
:
val_avg_cost
,
val_ppl
=
test
()
print
(
"epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
" consumed %fs"
%
(
pass_id
,
val_avg_cost
,
val_avg_cost
-
loss_normalizer
,
val_ppl
,
time_consumed
))
else
:
print
(
"epoch: %d, consumed %fs"
%
(
pass_id
,
time_consumed
))
fluid
.
io
.
save_persistables
(
exe
,
os
.
path
.
join
(
TrainTaskConfig
.
ckpt_dir
,
...
...
@@ -442,6 +462,10 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
data_input_names
[:
-
2
]
+
util_input_names
,
[
predict
],
exe
)
if
args
.
enable_ce
:
# For CE
print
(
"kpis
\t
train_cost
\t
%f"
%
total_avg_cost
)
print
(
"kpis
\t
test_cost
\t
%f"
%
val_avg_cost
)
print
(
"kpis
\t
train_duration
\t
%f"
%
time_consumed
)
def
train
(
args
):
...
...
@@ -465,6 +489,9 @@ def train(args):
exe
=
fluid
.
Executor
(
place
)
if
args
.
enable_ce
:
fluid
.
default_startup_program
().
random_seed
=
1000
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录