未验证 提交 8f61de12 编写于 作者: Y Yibing Liu 提交者: GitHub

Merge pull request #1121 from kuke/sequence_tagging_for_ner_ce

Enable ce for sequence_tagging_for_ner 
###!/bin/bash
####This file is only used for continuous evaluation.
export CE_MODE_X=1
python train.py | python _ce.py
......@@ -22,11 +22,7 @@
## 数据获取
请参考PaddlePaddle v2版本[命名实体识别](https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/README.md) 一节中数据获取方式,将该例中的data文件夹拷贝至本例目录下,运行其中的download.sh脚本获取训练和测试数据。
## 通用脚本获取
请将PaddlePaddle v2版本[命名实体识别](https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/README.md)中提供的用于数据读取的文件[reader.py](https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/reader.py)以及包含字典导入等通用功能的文件[utils.py](https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/utils.py)复制到本目录下。本例将会使用到这两个脚本。
完整数据的获取请参考PaddlePaddle v2版本[命名实体识别](https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/README.md) 一节中的方式。本例的示例数据同样可以通过运行data/download.sh来获取。
## 训练
......
####this file is only used for continuous evaluation test!
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi, DurationKpi, AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_acc_kpi = AccKpi('train_precision', 0.005, actived=True)
test_acc_kpi = CostKpi('test_precision', 0.005, actived=True)
train_duration_kpi = DurationKpi('train_duration', 0.05, actived=True)
tracking_kpis = [
train_acc_kpi,
test_acc_kpi,
train_duration_kpi,
]
def parse_log(log):
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] == 'kpis':
print("-----%s" % fs)
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name, kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
print("*****")
print(log)
print("****")
log_to_ce(log)
if [ -f assignment2.zip ]; then
echo "data exist"
exit 0
else
wget http://cs224d.stanford.edu/assignment2/assignment2.zip
fi
if [ $? -eq 0 ];then
unzip assignment2.zip
cp assignment2_release/data/ner/wordVectors.txt ./data
cp assignment2_release/data/ner/vocab.txt ./data
rm -rf assignment2_release
else
echo "download data error!" >> /dev/stderr
exit 1
fi
B-LOC
I-LOC
B-MISC
I-MISC
B-ORG
I-ORG
B-PER
I-PER
O
CRICKET NNP I-NP O
- : O O
LEICESTERSHIRE NNP I-NP I-ORG
TAKE NNP I-NP O
OVER IN I-PP O
AT NNP I-NP O
TOP NNP I-NP O
AFTER NNP I-NP O
INNINGS NNP I-NP O
VICTORY NN I-NP O
. . O O
LONDON NNP I-NP I-LOC
1996-08-30 CD I-NP O
West NNP I-NP I-MISC
Indian NNP I-NP I-MISC
all-rounder NN I-NP O
Phil NNP I-NP I-PER
Simmons NNP I-NP I-PER
took VBD I-VP O
four CD I-NP O
for IN I-PP O
38 CD I-NP O
on IN I-PP O
Friday NNP I-NP O
as IN I-PP O
Leicestershire NNP I-NP I-ORG
beat VBD I-VP O
Somerset NNP I-NP I-ORG
by IN I-PP O
an DT I-NP O
innings NN I-NP O
and CC O O
39 CD I-NP O
runs NNS I-NP O
in IN I-PP O
two CD I-NP O
days NNS I-NP O
to TO I-VP O
take VB I-VP O
over IN I-PP O
at IN B-PP O
the DT I-NP O
head NN I-NP O
of IN I-PP O
the DT I-NP O
county NN I-NP O
championship NN I-NP O
. . O O
Their PRP$ I-NP O
stay NN I-NP O
on IN I-PP O
top NN I-NP O
, , O O
though RB I-ADVP O
, , O O
may MD I-VP O
be VB I-VP O
short-lived JJ I-ADJP O
as IN I-PP O
title NN I-NP O
rivals NNS I-NP O
Essex NNP I-NP I-ORG
, , O O
Derbyshire NNP I-NP I-ORG
and CC I-NP O
Surrey NNP I-NP I-ORG
all DT O O
closed VBD I-VP O
in RP I-PRT O
on IN I-PP O
victory NN I-NP O
while IN I-SBAR O
Kent NNP I-NP I-ORG
made VBD I-VP O
up RP I-PRT O
for IN I-PP O
lost VBN I-NP O
time NN I-NP O
in IN I-PP O
their PRP$ I-NP O
rain-affected JJ I-NP O
match NN I-NP O
against IN I-PP O
Nottinghamshire NNP I-NP I-ORG
. . O O
After IN I-PP O
bowling VBG I-NP O
Somerset NNP I-NP I-ORG
out RP I-PRT O
for IN I-PP O
83 CD I-NP O
on IN I-PP O
the DT I-NP O
opening NN I-NP O
morning NN I-NP O
at IN I-PP O
Grace NNP I-NP I-LOC
Road NNP I-NP I-LOC
, , O O
Leicestershire NNP I-NP I-ORG
extended VBD I-VP O
their PRP$ I-NP O
first JJ I-NP O
innings NN I-NP O
by IN I-PP O
94 CD I-NP O
runs VBZ I-VP O
before IN I-PP O
being VBG I-VP O
bowled VBD I-VP O
out RP I-PRT O
for IN I-PP O
296 CD I-NP O
with IN I-PP O
England NNP I-NP I-LOC
discard VBP I-VP O
Andy NNP I-NP I-PER
Caddick NNP I-NP I-PER
taking VBG I-VP O
three CD I-NP O
for IN I-PP O
83 CD I-NP O
. . O O
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
. . O O
Peter NNP I-NP I-PER
Blackburn NNP I-NP I-PER
BRUSSELS NNP I-NP I-LOC
1996-08-22 CD I-NP O
The DT I-NP O
European NNP I-NP I-ORG
Commission NNP I-NP I-ORG
said VBD I-VP O
on IN I-PP O
Thursday NNP I-NP O
it PRP B-NP O
disagreed VBD I-VP O
with IN I-PP O
German JJ I-NP I-MISC
advice NN I-NP O
to TO I-PP O
consumers NNS I-NP O
to TO I-VP O
shun VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
until IN I-SBAR O
scientists NNS I-NP O
determine VBP I-VP O
whether IN I-SBAR O
mad JJ I-NP O
cow NN I-NP O
disease NN I-NP O
can MD I-VP O
be VB I-VP O
transmitted VBN I-VP O
to TO I-PP O
sheep NN I-NP O
. . O O
Germany NNP I-NP I-LOC
's POS B-NP O
representative NN I-NP O
to TO I-PP O
the DT I-NP O
European NNP I-NP I-ORG
Union NNP I-NP I-ORG
's POS B-NP O
veterinary JJ I-NP O
committee NN I-NP O
Werner NNP I-NP I-PER
Zwingmann NNP I-NP I-PER
said VBD I-VP O
on IN I-PP O
Wednesday NNP I-NP O
consumers NNS I-NP O
should MD I-VP O
buy VB I-VP O
sheepmeat NN I-NP O
from IN I-PP O
countries NNS I-NP O
other JJ I-ADJP O
than IN I-PP O
Britain NNP I-NP I-LOC
until IN I-SBAR O
the DT I-NP O
scientific JJ I-NP O
advice NN I-NP O
was VBD I-VP O
clearer JJR I-ADJP O
. . O O
" " O O
We PRP I-NP O
do VBP I-VP O
n't RB I-VP O
support VB I-VP O
any DT I-NP O
such JJ I-NP O
recommendation NN I-NP O
because IN I-SBAR O
we PRP I-NP O
do VBP I-VP O
n't RB I-VP O
see VB I-VP O
any DT I-NP O
grounds NNS I-NP O
for IN I-PP O
it PRP I-NP O
, , O O
" " O O
the DT I-NP O
Commission NNP I-NP I-ORG
's POS B-NP O
chief JJ I-NP O
spokesman NN I-NP O
Nikolaus NNP I-NP I-PER
van NNP I-NP I-PER
der FW I-NP I-PER
Pas NNP I-NP I-PER
told VBD I-VP O
a DT I-NP O
news NN I-NP O
briefing NN I-NP O
. . O O
He PRP I-NP O
said VBD I-VP O
further JJ I-NP O
scientific JJ I-NP O
study NN I-NP O
was VBD I-VP O
required VBN I-VP O
and CC O O
if IN I-SBAR O
it PRP I-NP O
was VBD I-VP O
found VBN I-VP O
that IN I-SBAR O
action NN I-NP O
was VBD I-VP O
needed VBN I-VP O
it PRP I-NP O
should MD I-VP O
be VB I-VP O
taken VBN I-VP O
by IN I-PP O
the DT I-NP O
European NNP I-NP I-ORG
Union NNP I-NP I-ORG
. . O O
"""
Conll03 dataset.
"""
from utils import *
__all__ = ["data_reader"]
def canonicalize_digits(word):
if any([c.isalpha() for c in word]): return word
word = re.sub("\d", "DG", word)
if word.startswith("DG"):
word = word.replace(",", "") # remove thousands separator
return word
def canonicalize_word(word, wordset=None, digits=True):
word = word.lower()
if digits:
if (wordset != None) and (word in wordset): return word
word = canonicalize_digits(word) # try to canonicalize numbers
if (wordset == None) or (word in wordset): return word
else: return "UUUNKKK" # unknown token
def data_reader(data_file, word_dict, label_dict):
"""
The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
It returns a reader creator, each sample in the reader includes:
word id sequence, label id sequence and raw sentence.
:return: reader creator
:rtype: callable
"""
def reader():
UNK_IDX = word_dict["UUUNKKK"]
sentence = []
labels = []
with open(data_file, "r") as f:
for line in f:
if len(line.strip()) == 0:
if len(sentence) > 0:
word_idx = [
word_dict.get(
canonicalize_word(w, word_dict), UNK_IDX)
for w in sentence
]
mark = [1 if w[0].isupper() else 0 for w in sentence]
label_idx = [label_dict[l] for l in labels]
yield word_idx, mark, label_idx
sentence = []
labels = []
else:
segs = line.strip().split()
sentence.append(segs[0])
# transform I-TYPE to BIO schema
if segs[-1] != "O" and (len(labels) == 0 or
labels[-1][1:] != segs[-1][1:]):
labels.append("B" + segs[-1][1:])
else:
labels.append(segs[-1])
return reader
import os
import math
import time
import numpy as np
import paddle.v2 as paddle
import paddle
import paddle.fluid as fluid
import reader
......@@ -24,12 +25,19 @@ def test(exe, chunk_evaluator, inference_program, test_data, place):
return chunk_evaluator.eval(exe)
def main(train_data_file, test_data_file, vocab_file, target_file, emb_file,
model_save_dir, num_passes, use_gpu, parallel):
def main(train_data_file,
test_data_file,
vocab_file,
target_file,
emb_file,
model_save_dir,
num_passes,
use_gpu,
parallel,
batch_size=200):
if not os.path.exists(model_save_dir):
os.mkdir(model_save_dir)
BATCH_SIZE = 200
word_dict = load_dict(vocab_file)
label_dict = load_dict(target_file)
......@@ -58,55 +66,71 @@ def main(train_data_file, test_data_file, vocab_file, target_file, emb_file,
test_target = chunk_evaluator.metrics + chunk_evaluator.states
inference_program = fluid.io.get_inference_program(test_target)
train_reader = paddle.batch(
paddle.reader.shuffle(
if "CE_MODE_X" not in os.environ:
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.data_reader(train_data_file, word_dict, label_dict),
buf_size=20000),
batch_size=batch_size)
test_reader = paddle.batch(
paddle.reader.shuffle(
reader.data_reader(test_data_file, word_dict, label_dict),
buf_size=20000),
batch_size=batch_size)
else:
train_reader = paddle.batch(
reader.data_reader(train_data_file, word_dict, label_dict),
buf_size=20000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
batch_size=batch_size)
test_reader = paddle.batch(
reader.data_reader(test_data_file, word_dict, label_dict),
buf_size=20000),
batch_size=BATCH_SIZE)
batch_size=batch_size)
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
feeder = fluid.DataFeeder(feed_list=[word, mark, target], place=place)
exe = fluid.Executor(place)
if "CE_MODE_X" in os.environ:
fluid.default_startup_program().random_seed = 110
exe.run(fluid.default_startup_program())
embedding_name = 'emb'
embedding_param = fluid.global_scope().find_var(embedding_name).get_tensor()
embedding_param.set(word_vector_values, place)
batch_id = 0
for pass_id in xrange(num_passes):
chunk_evaluator.reset(exe)
for data in train_reader():
for batch_id, data in enumerate(train_reader()):
cost, batch_precision, batch_recall, batch_f1_score = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + chunk_evaluator.metrics)
if batch_id % 5 == 0:
print(cost)
print("Pass " + str(pass_id) + ", Batch " + str(
batch_id) + ", Cost " + str(cost[0]) + ", Precision " + str(
batch_precision[0]) + ", Recall " + str(batch_recall[0])
+ ", F1_score" + str(batch_f1_score[0]))
batch_id = batch_id + 1
pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(exe)
print("[TrainSet] pass_id:" + str(pass_id) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(pass_recall) +
" pass_f1_score:" + str(pass_f1_score))
pass_precision, pass_recall, pass_f1_score = test(
test_pass_precision, test_pass_recall, test_pass_f1_score = test(
exe, chunk_evaluator, inference_program, test_reader, place)
print("[TestSet] pass_id:" + str(pass_id) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(pass_recall) +
" pass_f1_score:" + str(pass_f1_score))
test_pass_precision) + " pass_recall:" + str(test_pass_recall) +
" pass_f1_score:" + str(test_pass_f1_score))
save_dirname = os.path.join(model_save_dir, "params_pass_%d" % pass_id)
fluid.io.save_inference_model(save_dirname, ['word', 'mark', 'target'],
[crf_decode], exe)
crf_decode, exe)
if ("CE_MODE_X" in os.environ) and (pass_id % 50 == 0):
if pass_id > 0:
print("kpis train_precision %f" % pass_precision)
print("kpis test_precision %f" % test_pass_precision)
print("kpis train_duration %f" % (time.time() - time_begin))
time_begin = time.time()
if __name__ == "__main__":
......@@ -118,5 +142,6 @@ if __name__ == "__main__":
emb_file="data/wordVectors.txt",
model_save_dir="models",
num_passes=1000,
batch_size=1,
use_gpu=False,
parallel=False)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
import os
import re
import argparse
import numpy as np
from collections import defaultdict
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)
def get_embedding(emb_file='data/wordVectors.txt'):
"""
Get the trained word vector.
"""
return np.loadtxt(emb_file, dtype=float)
def load_dict(dict_path):
"""
Load the word dictionary from the given file.
Each line of the given file is a word, which can include multiple columns
seperated by tab.
This function takes the first column (columns in a line are seperated by
tab) as key and takes line number of a line as the key (index of the word
in the dictionary).
"""
return dict((line.strip().split("\t")[0], idx)
for idx, line in enumerate(open(dict_path, "r").readlines()))
def load_reverse_dict(dict_path):
"""
Load the word dictionary from the given file.
Each line of the given file is a word, which can include multiple columns
seperated by tab.
This function takes line number of a line as the key (index of the word in
the dictionary) and the first column (columns in a line are seperated by
tab) as the value.
"""
return dict((idx, line.strip().split("\t")[0])
for idx, line in enumerate(open(dict_path, "r").readlines()))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册