Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
99e7dd5e
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
99e7dd5e
编写于
5月 24, 2019
作者:
u010070587
提交者:
Kaipeng Deng
5月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add yolov3 ce (#2312)
上级
27730332
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
397 addition
and
280 deletion
+397
-280
PaddleCV/yolov3/.run_ce.sh
PaddleCV/yolov3/.run_ce.sh
+7
-0
PaddleCV/yolov3/README.md
PaddleCV/yolov3/README.md
+2
-3
PaddleCV/yolov3/README_cn.md
PaddleCV/yolov3/README_cn.md
+1
-2
PaddleCV/yolov3/_ce.py
PaddleCV/yolov3/_ce.py
+48
-0
PaddleCV/yolov3/box_utils.py
PaddleCV/yolov3/box_utils.py
+44
-18
PaddleCV/yolov3/config.py
PaddleCV/yolov3/config.py
+3
-4
PaddleCV/yolov3/eval.py
PaddleCV/yolov3/eval.py
+9
-10
PaddleCV/yolov3/image_utils.py
PaddleCV/yolov3/image_utils.py
+40
-50
PaddleCV/yolov3/infer.py
PaddleCV/yolov3/infer.py
+7
-7
PaddleCV/yolov3/models/darknet.py
PaddleCV/yolov3/models/darknet.py
+64
-46
PaddleCV/yolov3/models/yolov3.py
PaddleCV/yolov3/models/yolov3.py
+89
-73
PaddleCV/yolov3/reader.py
PaddleCV/yolov3/reader.py
+42
-43
PaddleCV/yolov3/train.py
PaddleCV/yolov3/train.py
+37
-21
PaddleCV/yolov3/utility.py
PaddleCV/yolov3/utility.py
+4
-3
未找到文件。
PaddleCV/yolov3/.run_ce.sh
0 → 100644
浏览文件 @
99e7dd5e
#!/bin/bash
#This file is only used for continuous evaluation.
export
CUDA_VISIBLE_DEVICES
=
0
python train.py
--enable_ce
True
--use_multiprocess
False
--snapshot_iter
100
--max_iter
200 | python _ce.py
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
python train.py
--enable_ce
True
--use_multiprocess
False
--snapshot_iter
100
--max_iter
200 | python _ce.py
PaddleCV/yolov3/README.md
浏览文件 @
99e7dd5e
...
...
@@ -62,7 +62,7 @@ The data catalog structure is as follows:
│ ├── 000000000139.jpg
│ ├── 000000000285.jpg
| ...
```
## Training
...
...
@@ -170,7 +170,7 @@ Inference speed(Tesla P40):
| input size | 608x608 | 416x416 | 320x320 |
|:-------------:| :-----: | :-----: | :-----: |
| infer speed | 48 ms/frame | 29 ms/frame |24 ms/frame |
| infer speed | 48 ms/frame | 29 ms/frame |24 ms/frame |
Visualization of infer result is shown as below:
...
...
@@ -181,4 +181,3 @@ Visualization of infer result is shown as below:
<img
src=
"image/000000515077.png"
height=
300
width=
400
hspace=
'10'
/>
<br
/>
YOLOv3 Visualization Examples
</p>
PaddleCV/yolov3/README_cn.md
浏览文件 @
99e7dd5e
...
...
@@ -172,7 +172,7 @@ Train Loss
| input size | 608x608 | 416x416 | 320x320 |
|:-------------:| :-----: | :-----: | :-----: |
| infer speed | 48 ms/frame | 29 ms/frame |24 ms/frame |
| infer speed | 48 ms/frame | 29 ms/frame |24 ms/frame |
下图为模型可视化预测结果:
<p
align=
"center"
>
...
...
@@ -182,4 +182,3 @@ Train Loss
<img
src=
"image/000000515077.png"
height=
300
width=
400
hspace=
'10'
/>
<br
/>
YOLOv3 预测可视化
</p>
PaddleCV/yolov3/_ce.py
0 → 100644
浏览文件 @
99e7dd5e
### This file is only used for continuous evaluation test!
from
__future__
import
print_function
from
__future__
import
division
from
__future__
import
absolute_import
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
train_cost_1card_kpi
=
CostKpi
(
'train_cost_1card'
,
0.02
,
0
,
actived
=
True
,
desc
=
'train cost'
)
train_duration_1card_kpi
=
DurationKpi
(
'train_duration_1card'
,
0.1
,
0
,
actived
=
True
,
desc
=
'train duration'
)
train_cost_8card_kpi
=
CostKpi
(
'train_cost_8card'
,
0.02
,
0
,
actived
=
True
,
desc
=
'train cost'
)
train_duration_8card_kpi
=
DurationKpi
(
'train_duration_8card'
,
0.1
,
0
,
actived
=
True
,
desc
=
'train duration'
)
tracking_kpis
=
[
train_cost_1card_kpi
,
train_duration_1card_kpi
,
train_cost_8card_kpi
,
train_duration_8card_kpi
]
def
parse_log
(
log
):
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
print
(
"-----%s"
%
fs
)
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
PaddleCV/yolov3/box_utils.py
浏览文件 @
99e7dd5e
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
@@ -47,6 +46,7 @@ def coco_anno_box_to_center_relative(box, img_height, img_width):
return
np
.
array
([
x
,
y
,
w
,
h
])
def
clip_relative_box_in_image
(
x
,
y
,
w
,
h
):
"""Clip relative box coordinates x, y, w, h to [0, 1]"""
x1
=
max
(
x
-
w
/
2
,
0.
)
...
...
@@ -58,6 +58,7 @@ def clip_relative_box_in_image(x, y, w, h):
w
=
x2
-
x1
h
=
y2
-
y1
def
box_xywh_to_xyxy
(
box
):
shape
=
box
.
shape
assert
shape
[
-
1
]
==
4
,
"Box shape[-1] should be 4."
...
...
@@ -68,6 +69,7 @@ def box_xywh_to_xyxy(box):
box
=
box
.
reshape
(
shape
)
return
box
def
box_iou_xywh
(
box1
,
box2
):
assert
box1
.
shape
[
-
1
]
==
4
,
"Box1 shape[-1] should be 4."
assert
box2
.
shape
[
-
1
]
==
4
,
"Box2 shape[-1] should be 4."
...
...
@@ -92,6 +94,7 @@ def box_iou_xywh(box1, box2):
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
)
def
box_iou_xyxy
(
box1
,
box2
):
assert
box1
.
shape
[
-
1
]
==
4
,
"Box1 shape[-1] should be 4."
assert
box2
.
shape
[
-
1
]
==
4
,
"Box2 shape[-1] should be 4."
...
...
@@ -114,17 +117,21 @@ def box_iou_xyxy(box1, box2):
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
)
def
box_crop
(
boxes
,
labels
,
scores
,
crop
,
img_shape
):
x
,
y
,
w
,
h
=
map
(
float
,
crop
)
im_w
,
im_h
=
map
(
float
,
img_shape
)
boxes
=
boxes
.
copy
()
boxes
[:,
0
],
boxes
[:,
2
]
=
(
boxes
[:,
0
]
-
boxes
[:,
2
]
/
2
)
*
im_w
,
(
boxes
[:,
0
]
+
boxes
[:,
2
]
/
2
)
*
im_w
boxes
[:,
1
],
boxes
[:,
3
]
=
(
boxes
[:,
1
]
-
boxes
[:,
3
]
/
2
)
*
im_h
,
(
boxes
[:,
1
]
+
boxes
[:,
3
]
/
2
)
*
im_h
boxes
[:,
0
],
boxes
[:,
2
]
=
(
boxes
[:,
0
]
-
boxes
[:,
2
]
/
2
)
*
im_w
,
(
boxes
[:,
0
]
+
boxes
[:,
2
]
/
2
)
*
im_w
boxes
[:,
1
],
boxes
[:,
3
]
=
(
boxes
[:,
1
]
-
boxes
[:,
3
]
/
2
)
*
im_h
,
(
boxes
[:,
1
]
+
boxes
[:,
3
]
/
2
)
*
im_h
crop_box
=
np
.
array
([
x
,
y
,
x
+
w
,
y
+
h
])
centers
=
(
boxes
[:,
:
2
]
+
boxes
[:,
2
:])
/
2.0
mask
=
np
.
logical_and
(
crop_box
[:
2
]
<=
centers
,
centers
<=
crop_box
[
2
:]).
all
(
axis
=
1
)
mask
=
np
.
logical_and
(
crop_box
[:
2
]
<=
centers
,
centers
<=
crop_box
[
2
:]).
all
(
axis
=
1
)
boxes
[:,
:
2
]
=
np
.
maximum
(
boxes
[:,
:
2
],
crop_box
[:
2
])
boxes
[:,
2
:]
=
np
.
minimum
(
boxes
[:,
2
:],
crop_box
[
2
:])
...
...
@@ -135,12 +142,20 @@ def box_crop(boxes, labels, scores, crop, img_shape):
boxes
=
boxes
*
np
.
expand_dims
(
mask
.
astype
(
'float32'
),
axis
=
1
)
labels
=
labels
*
mask
.
astype
(
'float32'
)
scores
=
scores
*
mask
.
astype
(
'float32'
)
boxes
[:,
0
],
boxes
[:,
2
]
=
(
boxes
[:,
0
]
+
boxes
[:,
2
])
/
2
/
w
,
(
boxes
[:,
2
]
-
boxes
[:,
0
])
/
w
boxes
[:,
1
],
boxes
[:,
3
]
=
(
boxes
[:,
1
]
+
boxes
[:,
3
])
/
2
/
h
,
(
boxes
[:,
3
]
-
boxes
[:,
1
])
/
h
boxes
[:,
0
],
boxes
[:,
2
]
=
(
boxes
[:,
0
]
+
boxes
[:,
2
])
/
2
/
w
,
(
boxes
[:,
2
]
-
boxes
[:,
0
])
/
w
boxes
[:,
1
],
boxes
[:,
3
]
=
(
boxes
[:,
1
]
+
boxes
[:,
3
])
/
2
/
h
,
(
boxes
[:,
3
]
-
boxes
[:,
1
])
/
h
return
boxes
,
labels
,
scores
,
mask
.
sum
()
def
draw_boxes_on_image
(
image_path
,
boxes
,
scores
,
labels
,
label_names
,
score_thresh
=
0.5
):
def
draw_boxes_on_image
(
image_path
,
boxes
,
scores
,
labels
,
label_names
,
score_thresh
=
0.5
):
image
=
np
.
array
(
Image
.
open
(
image_path
))
plt
.
figure
()
_
,
ax
=
plt
.
subplots
(
1
)
...
...
@@ -158,22 +173,33 @@ def draw_boxes_on_image(image_path, boxes, scores, labels, label_names, score_th
if
label
not
in
colors
:
colors
[
label
]
=
plt
.
get_cmap
(
'hsv'
)(
label
/
len
(
label_names
))
x1
,
y1
,
x2
,
y2
=
box
[
0
],
box
[
1
],
box
[
2
],
box
[
3
]
rect
=
plt
.
Rectangle
((
x1
,
y1
),
x2
-
x1
,
y2
-
y1
,
fill
=
False
,
linewidth
=
2.0
,
edgecolor
=
colors
[
label
])
rect
=
plt
.
Rectangle
(
(
x1
,
y1
),
x2
-
x1
,
y2
-
y1
,
fill
=
False
,
linewidth
=
2.0
,
edgecolor
=
colors
[
label
])
ax
.
add_patch
(
rect
)
ax
.
text
(
x1
,
y1
,
'{} {:.4f}'
.
format
(
label_names
[
label
],
score
),
verticalalignment
=
'bottom'
,
horizontalalignment
=
'left'
,
bbox
=
{
'facecolor'
:
colors
[
label
],
'alpha'
:
0.5
,
'pad'
:
0
},
fontsize
=
8
,
color
=
'white'
)
print
(
"
\t
{:15s} at {:25} score: {:.5f}"
.
format
(
label_names
[
int
(
label
)],
str
(
list
(
map
(
int
,
list
(
box
)))),
score
))
ax
.
text
(
x1
,
y1
,
'{} {:.4f}'
.
format
(
label_names
[
label
],
score
),
verticalalignment
=
'bottom'
,
horizontalalignment
=
'left'
,
bbox
=
{
'facecolor'
:
colors
[
label
],
'alpha'
:
0.5
,
'pad'
:
0
},
fontsize
=
8
,
color
=
'white'
)
print
(
"
\t
{:15s} at {:25} score: {:.5f}"
.
format
(
label_names
[
int
(
label
)],
str
(
list
(
map
(
int
,
list
(
box
)))),
score
))
image_name
=
image_name
.
replace
(
'jpg'
,
'png'
)
plt
.
axis
(
'off'
)
plt
.
gca
().
xaxis
.
set_major_locator
(
plt
.
NullLocator
())
plt
.
gca
().
yaxis
.
set_major_locator
(
plt
.
NullLocator
())
plt
.
savefig
(
"./output/{}"
.
format
(
image_name
),
bbox_inches
=
'tight'
,
pad_inches
=
0.0
)
plt
.
savefig
(
"./output/{}"
.
format
(
image_name
),
bbox_inches
=
'tight'
,
pad_inches
=
0.0
)
print
(
"Detect result save at ./output/{}
\n
"
.
format
(
image_name
))
plt
.
cla
()
plt
.
close
(
'all'
)
PaddleCV/yolov3/config.py
浏览文件 @
99e7dd5e
...
...
@@ -33,7 +33,6 @@ _C.gt_min_area = -1
# max target box number in an image
_C
.
max_box_num
=
50
#
# Training options
#
...
...
@@ -53,7 +52,6 @@ _C.nms_posk = 100
# score threshold for draw box in debug mode
_C
.
draw_thresh
=
0.5
#
# Model options
#
...
...
@@ -65,7 +63,9 @@ _C.pixel_means = [0.485, 0.456, 0.406]
_C
.
pixel_stds
=
[
0.229
,
0.224
,
0.225
]
# anchors box weight and height
_C
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
_C
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
# anchor mask of each yolo layer
_C
.
anchor_masks
=
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
...
...
@@ -73,7 +73,6 @@ _C.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# IoU threshold to ignore objectness loss of pred box
_C
.
ignore_thresh
=
.
7
#
# SOLVER options
#
...
...
PaddleCV/yolov3/eval.py
浏览文件 @
99e7dd5e
...
...
@@ -64,12 +64,12 @@ def eval():
w
=
x2
-
x1
+
1
h
=
y2
-
y1
+
1
bbox
=
[
x1
,
y1
,
w
,
h
]
res
=
{
'image_id'
:
im_id
,
'category_id'
:
label_ids
[
int
(
label
)],
'bbox'
:
list
(
map
(
float
,
bbox
)),
'score'
:
float
(
score
)
'image_id'
:
im_id
,
'category_id'
:
label_ids
[
int
(
label
)],
'bbox'
:
list
(
map
(
float
,
bbox
)),
'score'
:
float
(
score
)
}
result
.
append
(
res
)
return
result
...
...
@@ -79,11 +79,10 @@ def eval():
total_time
=
0
for
batch_id
,
batch_data
in
enumerate
(
test_reader
()):
start_time
=
time
.
time
()
batch_outputs
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
batch_data
),
return_numpy
=
False
,
use_program_cache
=
True
)
batch_outputs
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
batch_data
),
return_numpy
=
False
,
use_program_cache
=
True
)
lod
=
batch_outputs
[
0
].
lod
()[
0
]
nmsed_boxes
=
np
.
array
(
batch_outputs
[
0
])
if
nmsed_boxes
.
shape
[
1
]
!=
6
:
...
...
PaddleCV/yolov3/image_utils.py
浏览文件 @
99e7dd5e
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
@@ -30,46 +29,41 @@ def random_distort(img):
def
random_brightness
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Brightness
(
img
).
enhance
(
e
)
def
random_contrast
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Contrast
(
img
).
enhance
(
e
)
def
random_color
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Color
(
img
).
enhance
(
e
)
ops
=
[
random_brightness
,
random_contrast
,
random_color
]
np
.
random
.
shuffle
(
ops
)
img
=
Image
.
fromarray
(
img
)
img
=
ops
[
0
](
img
)
img
=
ops
[
1
](
img
)
img
=
ops
[
2
](
img
)
img
=
np
.
asarray
(
img
)
return
img
def
random_crop
(
img
,
boxes
,
labels
,
scores
,
scales
=
[
0.3
,
1.0
],
max_ratio
=
2.0
,
constraints
=
None
,
def
random_crop
(
img
,
boxes
,
labels
,
scores
,
scales
=
[
0.3
,
1.0
],
max_ratio
=
2.0
,
constraints
=
None
,
max_trial
=
50
):
if
len
(
boxes
)
==
0
:
return
img
,
boxes
if
not
constraints
:
constraints
=
[
(
0.1
,
1.0
),
(
0.3
,
1.0
),
(
0.5
,
1.0
),
(
0.7
,
1.0
),
(
0.9
,
1.0
),
(
0.0
,
1.0
)]
constraints
=
[(
0.1
,
1.0
),
(
0.3
,
1.0
),
(
0.5
,
1.0
),
(
0.7
,
1.0
),
(
0.9
,
1.0
),
(
0.0
,
1.0
)]
img
=
Image
.
fromarray
(
img
)
w
,
h
=
img
.
size
...
...
@@ -83,12 +77,9 @@ def random_crop(img,
crop_w
=
int
(
w
*
scale
*
np
.
sqrt
(
aspect_ratio
))
crop_x
=
random
.
randrange
(
w
-
crop_w
)
crop_y
=
random
.
randrange
(
h
-
crop_h
)
crop_box
=
np
.
array
([[
(
crop_x
+
crop_w
/
2.0
)
/
w
,
(
crop_y
+
crop_h
/
2.0
)
/
h
,
crop_w
/
float
(
w
),
crop_h
/
float
(
h
)
]])
crop_box
=
np
.
array
([[(
crop_x
+
crop_w
/
2.0
)
/
w
,
(
crop_y
+
crop_h
/
2.0
)
/
h
,
crop_w
/
float
(
w
),
crop_h
/
float
(
h
)]])
iou
=
box_utils
.
box_iou_xywh
(
crop_box
,
boxes
)
if
min_iou
<=
iou
.
min
()
and
max_iou
>=
iou
.
max
():
...
...
@@ -101,19 +92,21 @@ def random_crop(img,
box_utils
.
box_crop
(
boxes
,
labels
,
scores
,
crop
,
(
w
,
h
))
if
box_num
<
1
:
continue
img
=
img
.
crop
((
crop
[
0
],
crop
[
1
],
crop
[
0
]
+
crop
[
2
],
img
=
img
.
crop
((
crop
[
0
],
crop
[
1
],
crop
[
0
]
+
crop
[
2
],
crop
[
1
]
+
crop
[
3
])).
resize
(
img
.
size
,
Image
.
LANCZOS
)
img
=
np
.
asarray
(
img
)
return
img
,
crop_boxes
,
crop_labels
,
crop_scores
img
=
np
.
asarray
(
img
)
return
img
,
boxes
,
labels
,
scores
def
random_flip
(
img
,
gtboxes
,
thresh
=
0.5
):
if
random
.
random
()
>
thresh
:
img
=
img
[:,
::
-
1
,
:]
gtboxes
[:,
0
]
=
1.0
-
gtboxes
[:,
0
]
return
img
,
gtboxes
def
random_interp
(
img
,
size
,
interp
=
None
):
interp_method
=
[
cv2
.
INTER_NEAREST
,
...
...
@@ -121,28 +114,29 @@ def random_interp(img, size, interp=None):
cv2
.
INTER_AREA
,
cv2
.
INTER_CUBIC
,
cv2
.
INTER_LANCZOS4
,
]
]
if
not
interp
or
interp
not
in
interp_method
:
interp
=
interp_method
[
random
.
randint
(
0
,
len
(
interp_method
)
-
1
)]
h
,
w
,
_
=
img
.
shape
im_scale_x
=
size
/
float
(
w
)
im_scale_y
=
size
/
float
(
h
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
interp
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
interp
)
return
img
def
random_expand
(
img
,
gtboxes
,
max_ratio
=
4.
,
fill
=
None
,
keep_ratio
=
True
,
def
random_expand
(
img
,
gtboxes
,
max_ratio
=
4.
,
fill
=
None
,
keep_ratio
=
True
,
thresh
=
0.5
):
if
random
.
random
()
>
thresh
:
return
img
,
gtboxes
if
max_ratio
<
1.0
:
return
img
,
gtboxes
h
,
w
,
c
=
img
.
shape
ratio_x
=
random
.
uniform
(
1
,
max_ratio
)
if
keep_ratio
:
...
...
@@ -151,15 +145,15 @@ def random_expand(img,
ratio_y
=
random
.
uniform
(
1
,
max_ratio
)
oh
=
int
(
h
*
ratio_y
)
ow
=
int
(
w
*
ratio_x
)
off_x
=
random
.
randint
(
0
,
ow
-
w
)
off_y
=
random
.
randint
(
0
,
oh
-
h
)
off_x
=
random
.
randint
(
0
,
ow
-
w
)
off_y
=
random
.
randint
(
0
,
oh
-
h
)
out_img
=
np
.
zeros
((
oh
,
ow
,
c
))
if
fill
and
len
(
fill
)
==
c
:
for
i
in
range
(
c
):
out_img
[:,
:,
i
]
=
fill
[
i
]
*
255.0
out_img
[
off_y
:
off_y
+
h
,
off_x
:
off_x
+
w
,
:]
=
img
out_img
[
off_y
:
off_y
+
h
,
off_x
:
off_x
+
w
,
:]
=
img
gtboxes
[:,
0
]
=
((
gtboxes
[:,
0
]
*
w
)
+
off_x
)
/
float
(
ow
)
gtboxes
[:,
1
]
=
((
gtboxes
[:,
1
]
*
h
)
+
off_y
)
/
float
(
oh
)
gtboxes
[:,
2
]
=
gtboxes
[:,
2
]
/
ratio_x
...
...
@@ -167,21 +161,17 @@ def random_expand(img,
return
out_img
.
astype
(
'uint8'
),
gtboxes
def
shuffle_gtbox
(
gtbox
,
gtlabel
,
gtscore
):
gt
=
np
.
concatenate
(
[
gtbox
,
gtlabel
[:,
np
.
newaxis
],
gtscore
[:,
np
.
newaxis
]],
axis
=
1
)
gt
=
np
.
concatenate
(
[
gtbox
,
gtlabel
[:,
np
.
newaxis
],
gtscore
[:,
np
.
newaxis
]],
axis
=
1
)
idx
=
np
.
arange
(
gt
.
shape
[
0
])
np
.
random
.
shuffle
(
idx
)
gt
=
gt
[
idx
,
:]
return
gt
[:,
:
4
],
gt
[:,
4
],
gt
[:,
5
]
def
image_mixup
(
img1
,
gtboxes1
,
gtlabels1
,
gtscores1
,
img2
,
gtboxes2
,
gtlabels2
,
def
image_mixup
(
img1
,
gtboxes1
,
gtlabels1
,
gtscores1
,
img2
,
gtboxes2
,
gtlabels2
,
gtscores2
):
factor
=
np
.
random
.
beta
(
1.5
,
1.5
)
factor
=
max
(
0.0
,
min
(
1.0
,
factor
))
...
...
@@ -229,7 +219,8 @@ def image_mixup(img1,
gtscores
[:
gt_num
]
=
gtscores_all
[:
gt_num
]
return
img
.
astype
(
'uint8'
),
gtboxes
,
gtlabels
,
gtscores
def
image_augment
(
img
,
gtboxes
,
gtlabels
,
gtscores
,
size
,
means
=
None
):
def
image_augment
(
img
,
gtboxes
,
gtlabels
,
gtscores
,
size
,
means
=
None
):
img
=
random_distort
(
img
)
img
,
gtboxes
=
random_expand
(
img
,
gtboxes
,
fill
=
means
)
img
,
gtboxes
,
gtlabels
,
gtscores
=
\
...
...
@@ -240,4 +231,3 @@ def image_augment(img, gtboxes, gtlabels, gtscores, size, means=None):
return
img
.
astype
(
'float32'
),
gtboxes
.
astype
(
'float32'
),
\
gtlabels
.
astype
(
'int32'
),
gtscores
.
astype
(
'float32'
)
PaddleCV/yolov3/infer.py
浏览文件 @
99e7dd5e
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
time
import
numpy
as
np
...
...
@@ -54,14 +53,14 @@ def infer():
if
image_name
.
split
(
'.'
)[
-
1
]
in
[
'jpg'
,
'png'
]:
image_names
.
append
(
image_name
)
for
image_name
in
image_names
:
infer_reader
=
reader
.
infer
(
input_size
,
os
.
path
.
join
(
cfg
.
image_path
,
image_name
))
infer_reader
=
reader
.
infer
(
input_size
,
os
.
path
.
join
(
cfg
.
image_path
,
image_name
))
label_names
,
_
=
reader
.
get_label_infos
()
data
=
next
(
infer_reader
())
im_shape
=
data
[
0
][
2
]
outputs
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
),
return_numpy
=
False
)
outputs
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
),
return_numpy
=
False
)
bboxes
=
np
.
array
(
outputs
[
0
])
if
bboxes
.
shape
[
1
]
!=
6
:
print
(
"No object found in {}"
.
format
(
image_name
))
...
...
@@ -71,7 +70,8 @@ def infer():
boxes
=
bboxes
[:,
2
:].
astype
(
'float32'
)
path
=
os
.
path
.
join
(
cfg
.
image_path
,
image_name
)
box_utils
.
draw_boxes_on_image
(
path
,
boxes
,
scores
,
labels
,
label_names
,
cfg
.
draw_thresh
)
box_utils
.
draw_boxes_on_image
(
path
,
boxes
,
scores
,
labels
,
label_names
,
cfg
.
draw_thresh
)
if
__name__
==
'__main__'
:
...
...
PaddleCV/yolov3/models/darknet.py
浏览文件 @
99e7dd5e
...
...
@@ -17,6 +17,7 @@ from paddle.fluid.param_attr import ParamAttr
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.regularizer
import
L2Decay
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
...
...
@@ -32,8 +33,9 @@ def conv_bn_layer(input,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
name
+
".conv.weights"
),
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
name
+
".conv.weights"
),
bias_attr
=
False
)
bn_name
=
name
+
".bn"
...
...
@@ -42,72 +44,88 @@ def conv_bn_layer(input,
act
=
None
,
is_test
=
is_test
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.scale'
),
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.scale'
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.offset'
),
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.offset'
),
moving_mean_name
=
bn_name
+
'.mean'
,
moving_variance_name
=
bn_name
+
'.var'
)
if
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
def
downsample
(
input
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
is_test
=
True
,
def
downsample
(
input
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
is_test
=
True
,
name
=
None
):
return
conv_bn_layer
(
input
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
is_test
=
is_test
,
name
=
name
)
return
conv_bn_layer
(
input
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
is_test
=
is_test
,
name
=
name
)
def
basicblock
(
input
,
ch_out
,
is_test
=
True
,
name
=
None
):
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
1
,
0
,
is_test
=
is_test
,
name
=
name
+
".0"
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
*
2
,
3
,
1
,
1
,
is_test
=
is_test
,
name
=
name
+
".1"
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
1
,
0
,
is_test
=
is_test
,
name
=
name
+
".0"
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
*
2
,
3
,
1
,
1
,
is_test
=
is_test
,
name
=
name
+
".1"
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
input
,
y
=
conv2
,
act
=
None
)
return
out
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
is_test
=
True
,
name
=
None
):
res_out
=
block_func
(
input
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.0'
.
format
(
name
))
res_out
=
block_func
(
input
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.0'
.
format
(
name
))
for
j
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.{}'
.
format
(
name
,
j
))
res_out
=
block_func
(
res_out
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.{}'
.
format
(
name
,
j
))
return
res_out
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
],
basicblock
)
}
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
],
basicblock
)}
def
add_DarkNet53_conv_body
(
body_input
,
is_test
=
True
):
stages
,
block_func
=
DarkNet_cfg
[
53
]
stages
=
stages
[
0
:
5
]
conv1
=
conv_bn_layer
(
body_input
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
"yolo_input"
)
downsample_
=
downsample
(
conv1
,
ch_out
=
conv1
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"yolo_input.downsample"
)
conv1
=
conv_bn_layer
(
body_input
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
"yolo_input"
)
downsample_
=
downsample
(
conv1
,
ch_out
=
conv1
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"yolo_input.downsample"
)
blocks
=
[]
for
i
,
stage
in
enumerate
(
stages
):
block
=
layer_warp
(
block_func
,
downsample_
,
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
,
name
=
"stage.{}"
.
format
(
i
))
block
=
layer_warp
(
block_func
,
downsample_
,
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
,
name
=
"stage.{}"
.
format
(
i
))
blocks
.
append
(
block
)
if
i
<
len
(
stages
)
-
1
:
# do not downsaple in the last stage
downsample_
=
downsample
(
block
,
ch_out
=
block
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"stage.{}.downsample"
.
format
(
i
))
if
i
<
len
(
stages
)
-
1
:
# do not downsaple in the last stage
downsample_
=
downsample
(
block
,
ch_out
=
block
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"stage.{}.downsample"
.
format
(
i
))
return
blocks
[
-
1
:
-
4
:
-
1
]
PaddleCV/yolov3/models/yolov3.py
浏览文件 @
99e7dd5e
...
...
@@ -26,26 +26,48 @@ from config import cfg
from
.darknet
import
add_DarkNet53_conv_body
from
.darknet
import
conv_bn_layer
def
yolo_detection_block
(
input
,
channel
,
is_test
=
True
,
name
=
None
):
assert
channel
%
2
==
0
,
\
"channel {} cannot be divided by 2"
.
format
(
channel
)
conv
=
input
for
j
in
range
(
2
):
conv
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.{}.0'
.
format
(
name
,
j
))
conv
=
conv_bn_layer
(
conv
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.{}.1'
.
format
(
name
,
j
))
route
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.2'
.
format
(
name
))
tip
=
conv_bn_layer
(
route
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.tip'
.
format
(
name
))
conv
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.{}.0'
.
format
(
name
,
j
))
conv
=
conv_bn_layer
(
conv
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.{}.1'
.
format
(
name
,
j
))
route
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.2'
.
format
(
name
))
tip
=
conv_bn_layer
(
route
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.tip'
.
format
(
name
))
return
route
,
tip
def
upsample
(
input
,
scale
=
2
,
name
=
None
):
def
upsample
(
input
,
scale
=
2
,
name
=
None
):
# get dynamic upsample output shape
shape_nchw
=
fluid
.
layers
.
shape
(
input
)
shape_hw
=
fluid
.
layers
.
slice
(
shape_nchw
,
axes
=
[
0
],
starts
=
[
2
],
ends
=
[
4
])
...
...
@@ -56,16 +78,12 @@ def upsample(input, scale=2,name=None):
# reisze by actual_shape
out
=
fluid
.
layers
.
resize_nearest
(
input
=
input
,
scale
=
scale
,
actual_shape
=
out_shape
,
name
=
name
)
input
=
input
,
scale
=
scale
,
actual_shape
=
out_shape
,
name
=
name
)
return
out
class
YOLOv3
(
object
):
def
__init__
(
self
,
is_train
=
True
,
use_random
=
True
):
def
__init__
(
self
,
is_train
=
True
,
use_random
=
True
):
self
.
is_train
=
is_train
self
.
use_random
=
use_random
self
.
outputs
=
[]
...
...
@@ -77,10 +95,8 @@ class YOLOv3(object):
if
self
.
is_train
:
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
lod_levels
=
[
0
,
0
,
0
,
0
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
]
+
[
'float32'
],
use_double_buffer
=
True
)
...
...
@@ -88,13 +104,12 @@ class YOLOv3(object):
fluid
.
layers
.
read_file
(
self
.
py_reader
)
else
:
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
)
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
)
self
.
im_shape
=
fluid
.
layers
.
data
(
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
self
.
im_id
=
fluid
.
layers
.
data
(
name
=
"im_id"
,
shape
=
[
1
],
dtype
=
'int32'
)
name
=
"im_id"
,
shape
=
[
1
],
dtype
=
'int32'
)
def
feeds
(
self
):
if
not
self
.
is_train
:
return
[
self
.
image
,
self
.
im_id
,
self
.
im_shape
]
...
...
@@ -110,12 +125,12 @@ class YOLOv3(object):
blocks
=
add_DarkNet53_conv_body
(
self
.
image
,
not
self
.
is_train
)
for
i
,
block
in
enumerate
(
blocks
):
if
i
>
0
:
block
=
fluid
.
layers
.
concat
(
input
=
[
route
,
block
],
axis
=
1
)
route
,
tip
=
yolo_detection_block
(
block
,
channel
=
512
//
(
2
**
i
),
is_test
=
(
not
self
.
is_train
),
name
=
"yolo_block.{}"
.
format
(
i
))
block
=
fluid
.
layers
.
concat
(
input
=
[
route
,
block
],
axis
=
1
)
route
,
tip
=
yolo_detection_block
(
block
,
channel
=
512
//
(
2
**
i
),
is_test
=
(
not
self
.
is_train
),
name
=
"yolo_block.{}"
.
format
(
i
))
# out channel number = mask_num * (5 + class_num)
num_filters
=
len
(
cfg
.
anchor_masks
[
i
])
*
(
cfg
.
class_num
+
5
)
...
...
@@ -126,17 +141,19 @@ class YOLOv3(object):
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
"yolo_output.{}.conv.weights"
.
format
(
i
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
"yolo_output.{}.conv.bias"
.
format
(
i
)))
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
"yolo_output.{}.conv.weights"
.
format
(
i
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
"yolo_output.{}.conv.bias"
.
format
(
i
)))
self
.
outputs
.
append
(
block_out
)
if
i
<
len
(
blocks
)
-
1
:
route
=
conv_bn_layer
(
input
=
route
,
ch_out
=
256
//
(
2
**
i
),
ch_out
=
256
//
(
2
**
i
),
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
...
...
@@ -145,42 +162,42 @@ class YOLOv3(object):
# upsample
route
=
upsample
(
route
)
for
i
,
out
in
enumerate
(
self
.
outputs
):
anchor_mask
=
cfg
.
anchor_masks
[
i
]
if
self
.
is_train
:
loss
=
fluid
.
layers
.
yolov3_loss
(
x
=
out
,
gt_box
=
self
.
gtbox
,
gt_label
=
self
.
gtlabel
,
gt_score
=
self
.
gtscore
,
anchors
=
cfg
.
anchors
,
anchor_mask
=
anchor_mask
,
class_num
=
cfg
.
class_num
,
ignore_thresh
=
cfg
.
ignore_thresh
,
downsample_ratio
=
self
.
downsample
,
use_label_smooth
=
cfg
.
label_smooth
,
name
=
"yolo_loss"
+
str
(
i
))
x
=
out
,
gt_box
=
self
.
gtbox
,
gt_label
=
self
.
gtlabel
,
gt_score
=
self
.
gtscore
,
anchors
=
cfg
.
anchors
,
anchor_mask
=
anchor_mask
,
class_num
=
cfg
.
class_num
,
ignore_thresh
=
cfg
.
ignore_thresh
,
downsample_ratio
=
self
.
downsample
,
use_label_smooth
=
cfg
.
label_smooth
,
name
=
"yolo_loss"
+
str
(
i
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
else
:
mask_anchors
=
[]
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
(
cfg
.
anchors
[
2
*
m
])
mask_anchors
.
append
(
cfg
.
anchors
[
2
*
m
+
1
])
boxes
,
scores
=
fluid
.
layers
.
yolo_box
(
x
=
out
,
img_size
=
self
.
im_shape
,
anchors
=
mask_anchors
,
class_num
=
cfg
.
class_num
,
conf_thresh
=
cfg
.
valid_thresh
,
downsample_ratio
=
self
.
downsample
,
name
=
"yolo_box"
+
str
(
i
))
x
=
out
,
img_size
=
self
.
im_shape
,
anchors
=
mask_anchors
,
class_num
=
cfg
.
class_num
,
conf_thresh
=
cfg
.
valid_thresh
,
downsample_ratio
=
self
.
downsample
,
name
=
"yolo_box"
+
str
(
i
))
self
.
boxes
.
append
(
boxes
)
self
.
scores
.
append
(
fluid
.
layers
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
]))
self
.
downsample
//=
2
self
.
scores
.
append
(
fluid
.
layers
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
]))
self
.
downsample
//=
2
def
loss
(
self
):
return
sum
(
self
.
losses
)
...
...
@@ -189,12 +206,11 @@ class YOLOv3(object):
yolo_boxes
=
fluid
.
layers
.
concat
(
self
.
boxes
,
axis
=
1
)
yolo_scores
=
fluid
.
layers
.
concat
(
self
.
scores
,
axis
=
2
)
return
fluid
.
layers
.
multiclass_nms
(
bboxes
=
yolo_boxes
,
scores
=
yolo_scores
,
score_threshold
=
cfg
.
valid_thresh
,
nms_top_k
=
cfg
.
nms_topk
,
keep_top_k
=
cfg
.
nms_posk
,
nms_threshold
=
cfg
.
nms_thresh
,
background_label
=-
1
,
name
=
"multiclass_nms"
)
bboxes
=
yolo_boxes
,
scores
=
yolo_scores
,
score_threshold
=
cfg
.
valid_thresh
,
nms_top_k
=
cfg
.
nms_topk
,
keep_top_k
=
cfg
.
nms_posk
,
nms_threshold
=
cfg
.
nms_thresh
,
background_label
=-
1
,
name
=
"multiclass_nms"
)
PaddleCV/yolov3/reader.py
浏览文件 @
99e7dd5e
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
@@ -53,21 +52,17 @@ class DataSetReader(object):
cfg
.
dataset
))
if
mode
==
'train'
:
cfg
.
train_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_file_list
)
cfg
.
train_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_data_dir
)
cfg
.
train_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_data_dir
)
self
.
COCO
=
COCO
(
cfg
.
train_file_list
)
self
.
img_dir
=
cfg
.
train_data_dir
elif
mode
==
'test'
or
mode
==
'infer'
:
cfg
.
val_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_file_list
)
cfg
.
val_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_data_dir
)
cfg
.
val_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_file_list
)
cfg
.
val_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_data_dir
)
self
.
COCO
=
COCO
(
cfg
.
val_file_list
)
self
.
img_dir
=
cfg
.
val_data_dir
def
_parse_dataset_catagory
(
self
):
self
.
categories
=
self
.
COCO
.
loadCats
(
self
.
COCO
.
getCatIds
())
self
.
num_category
=
len
(
self
.
categories
)
...
...
@@ -76,10 +71,7 @@ class DataSetReader(object):
for
category
in
self
.
categories
:
self
.
label_names
.
append
(
category
[
'name'
])
self
.
label_ids
.
append
(
int
(
category
[
'id'
]))
self
.
category_to_id_map
=
{
v
:
i
for
i
,
v
in
enumerate
(
self
.
label_ids
)
}
self
.
category_to_id_map
=
{
v
:
i
for
i
,
v
in
enumerate
(
self
.
label_ids
)}
print
(
"Load in {} categories."
.
format
(
self
.
num_category
))
self
.
has_parsed_categpry
=
True
...
...
@@ -93,7 +85,8 @@ class DataSetReader(object):
img_height
=
img
[
'height'
]
img_width
=
img
[
'width'
]
anno
=
self
.
COCO
.
loadAnns
(
self
.
COCO
.
getAnnIds
(
imgIds
=
img
[
'id'
],
iscrowd
=
None
))
self
.
COCO
.
getAnnIds
(
imgIds
=
img
[
'id'
],
iscrowd
=
None
))
gt_index
=
0
for
target
in
anno
:
if
target
[
'area'
]
<
cfg
.
gt_min_area
:
...
...
@@ -102,7 +95,7 @@ class DataSetReader(object):
continue
box
=
box_utils
.
coco_anno_box_to_center_relative
(
target
[
'bbox'
],
img_height
,
img_width
)
target
[
'bbox'
],
img_height
,
img_width
)
if
box
[
2
]
<=
0
and
box
[
3
]
<=
0
:
continue
...
...
@@ -141,15 +134,15 @@ class DataSetReader(object):
if
mode
==
'infer'
:
return
[]
else
:
return
self
.
_parse_images
(
is_train
=
(
mode
==
'train'
))
def
get_reader
(
self
,
mode
,
size
=
416
,
batch_size
=
None
,
shuffle
=
False
,
mixup_iter
=
0
,
random_sizes
=
[],
return
self
.
_parse_images
(
is_train
=
(
mode
==
'train'
))
def
get_reader
(
self
,
mode
,
size
=
416
,
batch_size
=
None
,
shuffle
=
False
,
mixup_iter
=
0
,
random_sizes
=
[],
image
=
None
):
assert
mode
in
[
'train'
,
'test'
,
'infer'
],
"Unknow mode type!"
if
mode
!=
'infer'
:
...
...
@@ -166,9 +159,13 @@ class DataSetReader(object):
h
,
w
,
_
=
im
.
shape
im_scale_x
=
size
/
float
(
w
)
im_scale_y
=
size
/
float
(
h
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_CUBIC
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_CUBIC
)
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
-
1
))
out_img
=
(
out_img
/
255.0
-
mean
)
/
std
...
...
@@ -191,12 +188,12 @@ class DataSetReader(object):
mixup_gt_labels
=
np
.
array
(
mixup_img
[
'gt_labels'
]).
copy
()
mixup_gt_scores
=
np
.
ones_like
(
mixup_gt_labels
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
\
image_utils
.
image_mixup
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
mixup_im
,
mixup_gt_boxes
,
image_utils
.
image_mixup
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
mixup_im
,
mixup_gt_boxes
,
mixup_gt_labels
,
mixup_gt_scores
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
\
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
size
,
mean
)
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
...
...
@@ -230,12 +227,13 @@ class DataSetReader(object):
img_size
=
get_img_size
(
size
,
random_sizes
)
while
True
:
img
=
imgs
[
read_cnt
%
len
(
imgs
)]
mixup_img
=
get_mixup_img
(
imgs
,
mixup_iter
,
total_iter
,
read_cnt
)
mixup_img
=
get_mixup_img
(
imgs
,
mixup_iter
,
total_iter
,
read_cnt
)
read_cnt
+=
1
if
read_cnt
%
len
(
imgs
)
==
0
and
shuffle
:
np
.
random
.
shuffle
(
imgs
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
\
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
batch_out
.
append
([
im
,
gt_boxes
,
gt_labels
,
gt_scores
])
...
...
@@ -249,8 +247,7 @@ class DataSetReader(object):
imgs
=
self
.
_parse_images_by_mode
(
mode
)
batch_out
=
[]
for
img
in
imgs
:
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
)
batch_out
.
append
((
im
,
im_id
,
im_shape
))
if
len
(
batch_out
)
==
batch_size
:
...
...
@@ -262,8 +259,7 @@ class DataSetReader(object):
img
=
{}
img
[
'image'
]
=
image
img
[
'id'
]
=
0
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
)
batch_out
=
[(
im
,
im_id
,
im_shape
)]
yield
batch_out
...
...
@@ -273,17 +269,18 @@ class DataSetReader(object):
dsr
=
DataSetReader
()
def
train
(
size
=
416
,
batch_size
=
64
,
shuffle
=
True
,
def
train
(
size
=
416
,
batch_size
=
64
,
shuffle
=
True
,
total_iter
=
0
,
mixup_iter
=
0
,
random_sizes
=
[],
num_workers
=
8
,
max_queue
=
32
,
use_multiprocessing
=
True
):
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
int
(
mixup_iter
/
num_workers
),
random_sizes
)
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
int
(
mixup_iter
/
num_workers
),
random_sizes
)
if
not
use_multiprocessing
:
return
generator
...
...
@@ -316,15 +313,17 @@ def train(size=416,
finally
:
if
enqueuer
is
not
None
:
enqueuer
.
stop
()
return
reader
def
test
(
size
=
416
,
batch_size
=
1
):
return
dsr
.
get_reader
(
'test'
,
size
,
batch_size
)
def
infer
(
size
=
416
,
image
=
None
):
return
dsr
.
get_reader
(
'infer'
,
size
,
image
=
image
)
def
get_label_infos
():
return
dsr
.
get_label_infos
()
PaddleCV/yolov3/train.py
浏览文件 @
99e7dd5e
...
...
@@ -33,12 +33,12 @@ from config import cfg
def
train
():
if
cfg
.
debug
:
if
cfg
.
debug
or
args
.
enable_ce
:
fluid
.
default_startup_program
().
random_seed
=
1000
fluid
.
default_main_program
().
random_seed
=
1000
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
if
not
os
.
path
.
exists
(
cfg
.
model_save_dir
):
os
.
makedirs
(
cfg
.
model_save_dir
)
...
...
@@ -76,16 +76,18 @@ def train():
if
cfg
.
pretrain
:
if
not
os
.
path
.
exists
(
cfg
.
pretrain
):
print
(
"Pretrain weights not found: {}"
.
format
(
cfg
.
pretrain
))
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
cfg
.
pretrain
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
cfg
.
pretrain
,
predicate
=
if_exist
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
True
build_strategy
.
sync_batch_norm
=
cfg
.
syncbn
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
build_strategy
.
sync_batch_norm
=
cfg
.
syncbn
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
random_sizes
=
[
cfg
.
input_size
]
if
cfg
.
random_shape
:
...
...
@@ -93,13 +95,17 @@ def train():
total_iter
=
cfg
.
max_iter
-
cfg
.
start_iter
mixup_iter
=
total_iter
-
cfg
.
no_mixup_iter
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
cfg
.
batch_size
,
shuffle
=
True
,
total_iter
=
total_iter
*
devices_num
,
mixup_iter
=
mixup_iter
*
devices_num
,
random_sizes
=
random_sizes
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
shuffle
=
True
if
args
.
enable_ce
:
shuffle
=
False
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
cfg
.
batch_size
,
shuffle
=
shuffle
,
total_iter
=
total_iter
*
devices_num
,
mixup_iter
=
mixup_iter
*
devices_num
,
random_sizes
=
random_sizes
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
py_reader
=
model
.
py_reader
py_reader
.
decorate_paddle_reader
(
train_reader
)
...
...
@@ -121,7 +127,7 @@ def train():
for
iter_id
in
range
(
cfg
.
start_iter
,
cfg
.
max_iter
):
prev_start_time
=
start_time
start_time
=
time
.
time
()
losses
=
exe
.
run
(
compile_program
,
losses
=
exe
.
run
(
compile_program
,
fetch_list
=
[
v
.
name
for
v
in
fetch_list
])
smoothed_loss
.
add_value
(
np
.
mean
(
np
.
array
(
losses
[
0
])))
snapshot_loss
+=
np
.
mean
(
np
.
array
(
losses
[
0
]))
...
...
@@ -129,17 +135,27 @@ def train():
lr
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'learning_rate'
)
.
get_tensor
())
print
(
"Iter {:d}, lr {:.6f}, loss {:.6f}, time {:.5f}"
.
format
(
iter_id
,
lr
[
0
],
smoothed_loss
.
get_mean_value
(),
start_time
-
prev_start_time
))
iter_id
,
lr
[
0
],
smoothed_loss
.
get_mean_value
(),
start_time
-
prev_start_time
))
sys
.
stdout
.
flush
()
if
(
iter_id
+
1
)
%
cfg
.
snapshot_iter
==
0
:
save_model
(
"model_iter{}"
.
format
(
iter_id
))
print
(
"Snapshot {} saved, average loss: {},
\
average time: {}"
.
format
(
iter_id
+
1
,
snapshot_loss
/
float
(
cfg
.
snapshot_iter
),
snapshot_time
/
float
(
cfg
.
snapshot_iter
)))
iter_id
+
1
,
snapshot_loss
/
float
(
cfg
.
snapshot_iter
),
snapshot_time
/
float
(
cfg
.
snapshot_iter
)))
if
args
.
enable_ce
and
iter_id
==
cfg
.
max_iter
-
1
:
if
devices_num
==
1
:
print
(
"kpis
\t
train_cost_1card
\t
%f"
%
(
snapshot_loss
/
float
(
cfg
.
snapshot_iter
)))
print
(
"kpis
\t
train_duration_1card
\t
%f"
%
(
snapshot_time
/
float
(
cfg
.
snapshot_iter
)))
else
:
print
(
"kpis
\t
train_cost_8card
\t
%f"
%
(
snapshot_loss
/
float
(
cfg
.
snapshot_iter
)))
print
(
"kpis
\t
train_duration_8card
\t
%f"
%
(
snapshot_time
/
float
(
cfg
.
snapshot_iter
)))
snapshot_loss
=
0
snapshot_time
=
0
except
fluid
.
core
.
EOFException
:
...
...
PaddleCV/yolov3/utility.py
浏览文件 @
99e7dd5e
...
...
@@ -120,12 +120,13 @@ def parse_args():
add_arg
(
'nms_posk'
,
int
,
100
,
"The number of boxes of NMS output."
)
add_arg
(
'debug'
,
bool
,
False
,
"Debug mode"
)
# SINGLE EVAL AND DRAW
add_arg
(
'image_path'
,
str
,
'image'
,
add_arg
(
'image_path'
,
str
,
'image'
,
"The image path used to inference and visualize."
)
add_arg
(
'image_name'
,
str
,
None
,
add_arg
(
'image_name'
,
str
,
None
,
"The single image used to inference and visualize. None to inference all images in image_path"
)
add_arg
(
'draw_thresh'
,
float
,
0.5
,
add_arg
(
'draw_thresh'
,
float
,
0.5
,
"Confidence score threshold to draw prediction box in image in debug mode"
)
add_arg
(
'enable_ce'
,
bool
,
False
,
"If set True, enable continuous evaluation job."
)
# yapf: enable
args
=
parser
.
parse_args
()
file_name
=
sys
.
argv
[
0
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录