未验证 提交 932be2e9 编写于 作者: J jerrywgz 提交者: GitHub

add LRC Local Rademachar Complexity Regularization (#1745)

* add LRC Local Rademachar Complexity Regularization
上级 f8e8fb5c
# LRC Local Rademachar Complexity Regularization
This directory contains image classification model based on novel regularizer rooted in Local Rademacher Complexity (LRC). The regularization by LRC and [DARTS](https://arxiv.org/abs/1806.09055) are combined in this model and it achieves 97.3% accuracy on CIFAR-10 dataset.
---
# Table of Contents
- [Installation](#installation)
- [Data preparation](#data-preparation)
- [Training](#training)
- [Model performances](#model-performances)
## Installation
Running sample code in this directory requires PaddelPaddle Fluid v.1.2.0 and later. If the PaddlePaddle on your device is lower than this version, please follow the instructions in [installation document](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html#paddlepaddle) and make an update.
## Data preparation
When you want to use the cifar-10 dataset for the first time, you can download the dataset as:
sh ./dataset/download.sh
Please make sure your environment has an internet connection.
The dataset will be downloaded to `dataset/cifar/cifar-10-batches-py` in the same directory as the `train.py`. If automatic download fails, you can download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar.html and decompress it to the location mentioned above.
## Training
After data preparation, one can start the training step by:
python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
- Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to train.
- For more help on arguments:
python train_mixup.py --help
**data reader introduction:**
* Data reader is defined in `reader.py`.
* Reshape the images to 32 * 32.
* In training stage, images are padding to 40 * 40 and cropped randomly to the original size.
* In training stage, images are horizontally random flipped.
* Images are standardized to (0, 1).
* In training stage, cutout images randomly.
* Shuffle the order of the input images during training.
**model configuration:**
* Use auxiliary loss and auxiliary\_weight=0.4.
* Use dropout and drop\_path\_prob=0.2.
* Set lrc\_loss\_lambda=0.7.
**training strategy:**
* Use momentum optimizer with momentum=0.9.
* Weight decay is 0.0003.
* Use cosine decay with init\_lr=0.025.
* Total epoch is 600.
* Use Xaiver initalizer to weight in conv2d, Constant initalizer to weight in batch norm and Normal initalizer to weight in fc.
* Initalize bias in batch norm and fc to zero constant and do not add bias to conv2d.
## Model performances
Below is the accuracy on CIFAR-10 dataset:
| model | avg top1 | avg top5 |
| ----- | -------- | -------- |
| [DARTS-LRC](https://paddlemodels.bj.bcebos.com/autodl/fluid_rademacher.tar.gz) | 97.34 | 99.75 |
# LRC 局部Rademachar复杂度正则化
本目录包括了一种基于局部rademacher复杂度的新型正则(LRC)的图像分类模型。该模型将LRC正则和[DARTS](https://arxiv.org/abs/1806.09055)网络相结合,在CIFAR-10数据集中得到了97.3%的准确率。
---
# 内容
- [安装](#安装)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
- [模型性能](#模型性能)
## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.2.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html#paddlepaddle)中的说明来更新PaddlePaddle。
## 数据准备
第一次使用CIFAR-10数据集时,您可以通过如果命令下载:
sh ./dataset/download.sh
请确保您的环境有互联网连接。数据会下载到`train.py`同目录下的`dataset/cifar/cifar-10-batches-py`。如果下载失败,您可以自行从https://www.cs.toronto.edu/~kriz/cifar.html上下载cifar-10-python.tar.gz并解压到上述位置。
## 模型训练
数据准备好后,可以通过如下命令开始训练:
python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
- 通过设置 ```export CUDA_VISIBLE_DEVICES=0```指定单张GPU训练。
- 可选参数见:
python train_mixup.py --help
**数据读取器说明:**
* 数据读取器定义在`reader.py`
* 输入图像尺寸统一变换为32 * 32
* 训练时将图像填充为40 * 40然后随机剪裁为原输入图像大小
* 训练时图像随机水平翻转
* 对图像每个像素做归一化处理
* 训练时对图像做随机遮挡
* 训练时对输入图像做随机洗牌
**模型配置:**
* 使用辅助损失,辅助损失权重为0.4
* 使用dropout,随机丢弃率为0.2
* 设置lrc\_loss\_lambda为0.7
**训练策略:**
* 采用momentum优化算法训练,momentum=0.9
* 权重衰减系数为0.0001
* 采用正弦学习率衰减,初始学习率为0.025
* 总共训练600轮
* 对卷积权重采用Xaiver初始化,对batch norm权重采用固定初始化,对全连接层权重采用高斯初始化
* 对batch norm和全连接层偏差采用固定初始化,不对卷积设置偏差
## 模型性能
下表为该模型在CIFAR-10数据集上的性能:
| 模型 | 平均top1 | 平均top5 |
| ----- | -------- | -------- |
| [DARTS-LRC](https://paddlemodels.bj.bcebos.com/autodl/fluid_rademacher.tar.gz) | 97.34 | 99.75 |
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
mkdir cifar
cd cifar
# Download the data.
echo "Downloading..."
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
# Extract the data.
echo "Extracting..."
tar zvxf cifar-10-python.tar.gz
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
PRIMITIVES = [
'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3',
'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5'
]
NASNet = Genotype(
normal=[
('sep_conv_5x5', 1),
('sep_conv_3x3', 0),
('sep_conv_5x5', 0),
('sep_conv_3x3', 0),
('avg_pool_3x3', 1),
('skip_connect', 0),
('avg_pool_3x3', 0),
('avg_pool_3x3', 0),
('sep_conv_3x3', 1),
('skip_connect', 1),
],
normal_concat=[2, 3, 4, 5, 6],
reduce=[
('sep_conv_5x5', 1),
('sep_conv_7x7', 0),
('max_pool_3x3', 1),
('sep_conv_7x7', 0),
('avg_pool_3x3', 1),
('sep_conv_5x5', 0),
('skip_connect', 3),
('avg_pool_3x3', 2),
('sep_conv_3x3', 2),
('max_pool_3x3', 1),
],
reduce_concat=[4, 5, 6], )
AmoebaNet = Genotype(
normal=[
('avg_pool_3x3', 0),
('max_pool_3x3', 1),
('sep_conv_3x3', 0),
('sep_conv_5x5', 2),
('sep_conv_3x3', 0),
('avg_pool_3x3', 3),
('sep_conv_3x3', 1),
('skip_connect', 1),
('skip_connect', 0),
('avg_pool_3x3', 1),
],
normal_concat=[4, 5, 6],
reduce=[
('avg_pool_3x3', 0),
('sep_conv_3x3', 1),
('max_pool_3x3', 0),
('sep_conv_7x7', 2),
('sep_conv_7x7', 0),
('avg_pool_3x3', 1),
('max_pool_3x3', 0),
('max_pool_3x3', 1),
('conv_7x1_1x7', 0),
('sep_conv_3x3', 5),
],
reduce_concat=[3, 4, 6])
DARTS_V1 = Genotype(
normal=[('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 0),
('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 1),
('sep_conv_3x3', 0), ('skip_connect', 2)],
normal_concat=[2, 3, 4, 5],
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2),
('max_pool_3x3', 0), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('avg_pool_3x3', 0)],
reduce_concat=[2, 3, 4, 5])
DARTS_V2 = Genotype(
normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0),
('sep_conv_3x3', 1), ('sep_conv_3x3', 1), ('skip_connect', 0),
('skip_connect', 0), ('dil_conv_3x3', 2)],
normal_concat=[2, 3, 4, 5],
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2),
('max_pool_3x3', 1), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('max_pool_3x3', 1)],
reduce_concat=[2, 3, 4, 5])
MY_DARTS = Genotype(
normal=[('sep_conv_3x3', 0), ('skip_connect', 1), ('skip_connect', 0),
('dil_conv_5x5', 1), ('skip_connect', 0), ('sep_conv_3x3', 1),
('skip_connect', 0), ('sep_conv_3x3', 1)],
normal_concat=range(2, 6),
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 0),
('skip_connect', 2), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('skip_connect', 3)],
reduce_concat=range(2, 6))
DARTS = MY_DARTS
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import math
from paddle.fluid.initializer import init_on_cpu
def cosine_decay(learning_rate, num_epoch, steps_one_epoch):
"""Applies cosine decay to the learning rate.
lr = 0.5 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step = _decay_step_counter()
with init_on_cpu():
decayed_lr = learning_rate * \
(ops.cos((global_step / steps_one_epoch) \
* math.pi / num_epoch) + 1)/2
return decayed_lr
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import time
import functools
import paddle
import paddle.fluid as fluid
from operations import *
class Cell():
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction,
reduction_prev):
print(C_prev_prev, C_prev, C)
if reduction_prev:
self.preprocess0 = functools.partial(FactorizedReduce, C_out=C)
else:
self.preprocess0 = functools.partial(
ReLUConvBN, C_out=C, kernel_size=1, stride=1, padding=0)
self.preprocess1 = functools.partial(
ReLUConvBN, C_out=C, kernel_size=1, stride=1, padding=0)
if reduction:
op_names, indices = zip(*genotype.reduce)
concat = genotype.reduce_concat
else:
op_names, indices = zip(*genotype.normal)
concat = genotype.normal_concat
print(op_names, indices, concat, reduction)
self._compile(C, op_names, indices, concat, reduction)
def _compile(self, C, op_names, indices, concat, reduction):
assert len(op_names) == len(indices)
self._steps = len(op_names) // 2
self._concat = concat
self.multiplier = len(concat)
self._ops = []
for name, index in zip(op_names, indices):
stride = 2 if reduction and index < 2 else 1
op = functools.partial(OPS[name], C=C, stride=stride, affine=True)
self._ops += [op]
self._indices = indices
def forward(self, s0, s1, drop_prob, is_train, name):
self.training = is_train
preprocess0_name = name + 'preprocess0.'
preprocess1_name = name + 'preprocess1.'
s0 = self.preprocess0(s0, name=preprocess0_name)
s1 = self.preprocess1(s1, name=preprocess1_name)
out = [s0, s1]
for i in range(self._steps):
h1 = out[self._indices[2 * i]]
h2 = out[self._indices[2 * i + 1]]
op1 = self._ops[2 * i]
op2 = self._ops[2 * i + 1]
h3 = op1(h1, name=name + '_ops.' + str(2 * i) + '.')
h4 = op2(h2, name=name + '_ops.' + str(2 * i + 1) + '.')
if self.training and drop_prob > 0.:
if h3 != h1:
h3 = fluid.layers.dropout(
h3,
drop_prob,
dropout_implementation='upscale_in_train')
if h4 != h2:
h4 = fluid.layers.dropout(
h4,
drop_prob,
dropout_implementation='upscale_in_train')
s = h3 + h4
out += [s]
return fluid.layers.concat([out[i] for i in self._concat], axis=1)
def AuxiliaryHeadCIFAR(input, num_classes, aux_name='auxiliary_head'):
relu_a = fluid.layers.relu(input)
pool_a = fluid.layers.pool2d(relu_a, 5, 'avg', 3)
conv2d_a = fluid.layers.conv2d(
pool_a,
128,
1,
name=aux_name + '.features.2',
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=aux_name + '.features.2.weight'),
bias_attr=False)
bn_a_name = aux_name + '.features.3'
bn_a = fluid.layers.batch_norm(
conv2d_a,
act='relu',
name=bn_a_name,
param_attr=ParamAttr(
initializer=Constant(1.), name=bn_a_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=bn_a_name + '.bias'),
moving_mean_name=bn_a_name + '.running_mean',
moving_variance_name=bn_a_name + '.running_var')
conv2d_b = fluid.layers.conv2d(
bn_a,
768,
2,
name=aux_name + '.features.5',
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=aux_name + '.features.5.weight'),
bias_attr=False)
bn_b_name = aux_name + '.features.6'
bn_b = fluid.layers.batch_norm(
conv2d_b,
act='relu',
name=bn_b_name,
param_attr=ParamAttr(
initializer=Constant(1.), name=bn_b_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=bn_b_name + '.bias'),
moving_mean_name=bn_b_name + '.running_mean',
moving_variance_name=bn_b_name + '.running_var')
fc_name = aux_name + '.classifier'
fc = fluid.layers.fc(bn_b,
num_classes,
name=fc_name,
param_attr=ParamAttr(
initializer=Normal(scale=1e-3),
name=fc_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=fc_name + '.bias'))
return fc
def StemConv(input, C_out, kernel_size, padding):
conv_a = fluid.layers.conv2d(
input,
C_out,
kernel_size,
padding=padding,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0), name='stem.0.weight'),
bias_attr=False)
bn_a = fluid.layers.batch_norm(
conv_a,
param_attr=ParamAttr(
initializer=Constant(1.), name='stem.1.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name='stem.1.bias'),
moving_mean_name='stem.1.running_mean',
moving_variance_name='stem.1.running_var')
return bn_a
class NetworkCIFAR(object):
def __init__(self, C, class_num, layers, auxiliary, genotype):
self.class_num = class_num
self._layers = layers
self._auxiliary = auxiliary
stem_multiplier = 3
self.drop_path_prob = 0
C_curr = stem_multiplier * C
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = []
reduction_prev = False
for i in range(layers):
if i in [layers // 3, 2 * layers // 3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction,
reduction_prev)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr
if i == 2 * layers // 3:
C_to_auxiliary = C_prev
def forward(self, init_channel, is_train):
self.training = is_train
self.logits_aux = None
num_channel = init_channel * 3
s0 = StemConv(self.image, num_channel, kernel_size=3, padding=1)
s1 = s0
for i, cell in enumerate(self.cells):
name = 'cells.' + str(i) + '.'
s0, s1 = s1, cell.forward(s0, s1, self.drop_path_prob, is_train,
name)
if i == int(2 * self._layers // 3):
if self._auxiliary and self.training:
self.logits_aux = AuxiliaryHeadCIFAR(s1, self.class_num)
out = fluid.layers.adaptive_pool2d(s1, (1, 1), "avg")
self.logits = fluid.layers.fc(out,
size=self.class_num,
param_attr=ParamAttr(
initializer=Normal(scale=1e-3),
name='classifier.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
name='classifier.bias'))
return self.logits, self.logits_aux
def build_input(self, image_shape, batch_size, is_train):
if is_train:
py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 1], [-1, 1], [-1, 1], [-1, 1],
[-1, 1], [-1, batch_size, self.class_num - 1]],
lod_levels=[0, 0, 0, 0, 0, 0, 0],
dtypes=[
"float32", "int64", "int64", "float32", "int32", "int32",
"float32"
],
use_double_buffer=True,
name='train_reader')
else:
py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 1]],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
use_double_buffer=True,
name='test_reader')
return py_reader
def train_model(self, py_reader, init_channels, aux, aux_w, batch_size,
loss_lambda):
self.image, self.ya, self.yb, self.lam, self.label_reshape,\
self.non_label_reshape, self.rad_var = fluid.layers.read_file(py_reader)
self.logits, self.logits_aux = self.forward(init_channels, True)
self.mixup_loss = self.mixup_loss(aux, aux_w)
self.lrc_loss = self.lrc_loss(batch_size)
return self.mixup_loss + loss_lambda * self.lrc_loss
def test_model(self, py_reader, init_channels):
self.image, self.ya = fluid.layers.read_file(py_reader)
self.logits, _ = self.forward(init_channels, False)
prob = fluid.layers.softmax(self.logits, use_cudnn=False)
loss = fluid.layers.cross_entropy(prob, self.ya)
acc_1 = fluid.layers.accuracy(self.logits, self.ya, k=1)
acc_5 = fluid.layers.accuracy(self.logits, self.ya, k=5)
return loss, acc_1, acc_5
def mixup_loss(self, auxiliary, auxiliary_weight):
prob = fluid.layers.softmax(self.logits, use_cudnn=False)
loss_a = fluid.layers.cross_entropy(prob, self.ya)
loss_b = fluid.layers.cross_entropy(prob, self.yb)
loss_a_mean = fluid.layers.reduce_mean(loss_a)
loss_b_mean = fluid.layers.reduce_mean(loss_b)
loss = self.lam * loss_a_mean + (1 - self.lam) * loss_b_mean
if auxiliary:
prob_aux = fluid.layers.softmax(self.logits_aux, use_cudnn=False)
loss_a_aux = fluid.layers.cross_entropy(prob_aux, self.ya)
loss_b_aux = fluid.layers.cross_entropy(prob_aux, self.yb)
loss_a_aux_mean = fluid.layers.reduce_mean(loss_a_aux)
loss_b_aux_mean = fluid.layers.reduce_mean(loss_b_aux)
loss_aux = self.lam * loss_a_aux_mean + (1 - self.lam
) * loss_b_aux_mean
return loss + auxiliary_weight * loss_aux
def lrc_loss(self, batch_size):
y_diff_reshape = fluid.layers.reshape(self.logits, shape=(-1, 1))
label_reshape = fluid.layers.squeeze(self.label_reshape, axes=[1])
non_label_reshape = fluid.layers.squeeze(
self.non_label_reshape, axes=[1])
label_reshape.stop_gradient = True
non_label_reshape.stop_graident = True
y_diff_label_reshape = fluid.layers.gather(y_diff_reshape,
label_reshape)
y_diff_non_label_reshape = fluid.layers.gather(y_diff_reshape,
non_label_reshape)
y_diff_label = fluid.layers.reshape(
y_diff_label_reshape, shape=(-1, batch_size, 1))
y_diff_non_label = fluid.layers.reshape(
y_diff_non_label_reshape,
shape=(-1, batch_size, self.class_num - 1))
y_diff_ = y_diff_non_label - y_diff_label
y_diff_ = fluid.layers.transpose(y_diff_, perm=[1, 2, 0])
rad_var_trans = fluid.layers.transpose(self.rad_var, perm=[1, 2, 0])
rad_y_diff_trans = rad_var_trans * y_diff_
lrc_loss_sum = fluid.layers.reduce_sum(rad_y_diff_trans, dim=[0, 1])
lrc_loss_ = fluid.layers.abs(lrc_loss_sum) / (batch_size *
(self.class_num - 1))
lrc_loss_mean = fluid.layers.reduce_mean(lrc_loss_)
return lrc_loss_mean
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.initializer import Normal
from paddle.fluid.initializer import Constant
OPS = {
'none' : lambda input, C, stride, name, affine: Zero(input, stride, name),
'avg_pool_3x3' : lambda input, C, stride, name, affine: fluid.layers.pool2d(input, 3, 'avg', pool_stride=stride, pool_padding=1, name=name),
'max_pool_3x3' : lambda input, C, stride, name, affine: fluid.layers.pool2d(input, 3, 'max', pool_stride=stride, pool_padding=1, name=name),
'skip_connect' : lambda input,C, stride, name, affine: Identity(input, name) if stride == 1 else FactorizedReduce(input, C, name=name, affine=affine),
'sep_conv_3x3' : lambda input,C, stride, name, affine: SepConv(input, C, C, 3, stride, 1, name=name, affine=affine),
'sep_conv_5x5' : lambda input,C, stride, name, affine: SepConv(input, C, C, 5, stride, 2, name=name, affine=affine),
'sep_conv_7x7' : lambda input,C, stride, name, affine: SepConv(input, C, C, 7, stride, 3, name=name, affine=affine),
'dil_conv_3x3' : lambda input,C, stride, name, affine: DilConv(input, C, C, 3, stride, 2, 2, name=name, affine=affine),
'dil_conv_5x5' : lambda input,C, stride, name, affine: DilConv(input, C, C, 5, stride, 4, 2, name=name, affine=affine),
'conv_7x1_1x7' : lambda input,C, stride, name, affine: SevenConv(input, C, name=name, affine=affine)
}
def ReLUConvBN(input, C_out, kernel_size, stride, padding, name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out,
kernel_size,
stride,
padding,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False)
if affine:
reluconvbn_out = fluid.layers.batch_norm(
conv2d_a,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.2.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.2.bias'),
moving_mean_name=name + 'op.2.running_mean',
moving_variance_name=name + 'op.2.running_var')
else:
reluconvbn_out = fluid.layers.batch_norm(
conv2d_a,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.2.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.2.bias'),
moving_mean_name=name + 'op.2.running_mean',
moving_variance_name=name + 'op.2.running_var')
return reluconvbn_out
def DilConv(input,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_in,
kernel_size,
stride,
padding,
dilation,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_out,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
dilconv_out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
dilconv_out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
return dilconv_out
def SepConv(input,
C_in,
C_out,
kernel_size,
stride,
padding,
name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_in,
kernel_size,
stride,
padding,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_in,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
bn_a = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
bn_a = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
relu_b = fluid.layers.relu(bn_a)
conv2d_d = fluid.layers.conv2d(
relu_b,
C_in,
kernel_size,
1,
padding,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.5.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_e = fluid.layers.conv2d(
conv2d_d,
C_out,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.6.weight'),
bias_attr=False)
if affine:
sepconv_out = fluid.layers.batch_norm(
conv2d_e,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.7.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.7.bias'),
moving_mean_name=name + 'op.7.running_mean',
moving_variance_name=name + 'op.7.running_var')
else:
sepconv_out = fluid.layers.batch_norm(
conv2d_e,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.7.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.7.bias'),
moving_mean_name=name + 'op.7.running_mean',
moving_variance_name=name + 'op.7.running_var')
return sepconv_out
def SevenConv(input, C_out, stride, name='', affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out, (1, 7), (1, stride), (0, 3),
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_out, (7, 1), (stride, 1), (3, 0),
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
def Identity(input, name=''):
return input
def Zero(input, stride, name=''):
ones = np.ones(input.shape[-2:])
ones[::stride, ::stride] = 0
ones = fluid.layers.assign(ones)
return input * ones
def FactorizedReduce(input, C_out, name='', affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out // 2,
1,
2,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'conv_1.weight'),
bias_attr=False)
h_end = relu_a.shape[2]
w_end = relu_a.shape[3]
slice_a = fluid.layers.slice(relu_a, [2, 3], [1, 1], [h_end, w_end])
conv2d_b = fluid.layers.conv2d(
slice_a,
C_out // 2,
1,
2,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'conv_2.weight'),
bias_attr=False)
out = fluid.layers.concat([conv2d_a, conv2d_b], axis=1)
if affine:
out = fluid.layers.batch_norm(
out,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'bn.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'bn.bias'),
moving_mean_name=name + 'bn.running_mean',
moving_variance_name=name + 'bn.running_var')
else:
out = fluid.layers.batch_norm(
out,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'bn.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'bn.bias'),
moving_mean_name=name + 'bn.running_mean',
moving_variance_name=name + 'bn.running_var')
return out
# Copyright (c) 2019 PaddlePaddle Authors. All Rig hts Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
"""
CIFAR-10 dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images.
"""
from PIL import Image
from PIL import ImageOps
import numpy as np
import cPickle
import random
import utils
import paddle.fluid as fluid
import time
import os
import functools
import paddle.reader
__all__ = ['train10', 'test10']
image_size = 32
image_depth = 3
half_length = 8
CIFAR_MEAN = [0.4914, 0.4822, 0.4465]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
def generate_reshape_label(label, batch_size, CIFAR_CLASSES=10):
reshape_label = np.zeros((batch_size, 1), dtype='int32')
reshape_non_label = np.zeros(
(batch_size * (CIFAR_CLASSES - 1), 1), dtype='int32')
num = 0
for i in range(batch_size):
label_i = label[i]
reshape_label[i] = label_i + i * CIFAR_CLASSES
for j in range(CIFAR_CLASSES):
if label_i != j:
reshape_non_label[num] = \
j + i * CIFAR_CLASSES
num += 1
return reshape_label, reshape_non_label
def generate_bernoulli_number(batch_size, CIFAR_CLASSES=10):
rcc_iters = 50
rad_var = np.zeros((rcc_iters, batch_size, CIFAR_CLASSES - 1))
for i in range(rcc_iters):
bernoulli_num = np.random.binomial(size=batch_size, n=1, p=0.5)
bernoulli_map = np.array([])
ones = np.ones((CIFAR_CLASSES - 1, 1))
for batch_id in range(batch_size):
num = bernoulli_num[batch_id]
var_id = 2 * ones * num - 1
bernoulli_map = np.append(bernoulli_map, var_id)
rad_var[i] = bernoulli_map.reshape((batch_size, CIFAR_CLASSES - 1))
return rad_var.astype('float32')
def preprocess(sample, is_training, args):
image_array = sample.reshape(3, image_size, image_size)
rgb_array = np.transpose(image_array, (1, 2, 0))
img = Image.fromarray(rgb_array, 'RGB')
if is_training:
# pad and ramdom crop
img = ImageOps.expand(img, (4, 4, 4, 4), fill=0) # pad to 40 * 40 * 3
left_top = np.random.randint(9, size=2) # rand 0 - 8
img = img.crop((left_top[0], left_top[1], left_top[0] + image_size,
left_top[1] + image_size))
if np.random.randint(2):
img = img.transpose(Image.FLIP_LEFT_RIGHT)
img = np.array(img).astype(np.float32)
# per_image_standardization
img_float = img / 255.0
img = (img_float - CIFAR_MEAN) / CIFAR_STD
if is_training and args.cutout:
center = np.random.randint(image_size, size=2)
offset_width = max(0, center[0] - half_length)
offset_height = max(0, center[1] - half_length)
target_width = min(center[0] + half_length, image_size)
target_height = min(center[1] + half_length, image_size)
for i in range(offset_height, target_height):
for j in range(offset_width, target_width):
img[i][j][:] = 0.0
img = np.transpose(img, (2, 0, 1))
return img
def reader_creator_filepath(filename, sub_name, is_training, args):
files = os.listdir(filename)
names = [each_item for each_item in files if sub_name in each_item]
names.sort()
datasets = []
for name in names:
print("Reading file " + name)
batch = cPickle.load(open(filename + name, 'rb'))
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
dataset = zip(data, labels)
datasets.extend(dataset)
random.shuffle(datasets)
def read_batch(datasets, args):
for sample, label in datasets:
im = preprocess(sample, is_training, args)
yield im, [int(label)]
def reader():
batch_data = []
batch_label = []
for data, label in read_batch(datasets, args):
batch_data.append(data)
batch_label.append(label)
if len(batch_data) == args.batch_size:
batch_data = np.array(batch_data, dtype='float32')
batch_label = np.array(batch_label, dtype='int64')
if is_training:
flatten_label, flatten_non_label = \
generate_reshape_label(batch_label, args.batch_size)
rad_var = generate_bernoulli_number(args.batch_size)
mixed_x, y_a, y_b, lam = utils.mixup_data(
batch_data, batch_label, args.batch_size,
args.mix_alpha)
batch_out = [[mixed_x, y_a, y_b, lam, flatten_label, \
flatten_non_label, rad_var]]
yield batch_out
else:
batch_out = [[batch_data, batch_label]]
yield batch_out
batch_data = []
batch_label = []
return reader
def train10(args):
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
"""
return reader_creator_filepath(args.data, 'data_batch', True, args)
def test10(args):
"""
CIFAR-10 test set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
"""
return reader_creator_filepath(args.data, 'test_batch', False, args)
CUDA_VISIBLE_DEVICES=0 python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from learning_rate import cosine_decay
import numpy as np
import argparse
from model import NetworkCIFAR as Network
import reader
import sys
import os
import time
import logging
import genotypes
import paddle.fluid as fluid
import shutil
import utils
import cPickle as cp
parser = argparse.ArgumentParser("cifar")
parser.add_argument(
'--data',
type=str,
default='./dataset/cifar/cifar-10-batches-py/',
help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument(
'--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument(
'--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument(
'--report_freq', type=float, default=50, help='report frequency')
parser.add_argument(
'--epochs', type=int, default=600, help='num of training epochs')
parser.add_argument(
'--init_channels', type=int, default=36, help='num of init channels')
parser.add_argument(
'--layers', type=int, default=20, help='total number of layers')
parser.add_argument(
'--model_path',
type=str,
default='saved_models',
help='path to save the model')
parser.add_argument(
'--auxiliary',
action='store_true',
default=False,
help='use auxiliary tower')
parser.add_argument(
'--auxiliary_weight',
type=float,
default=0.4,
help='weight for auxiliary loss')
parser.add_argument(
'--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument(
'--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument(
'--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument(
'--arch', type=str, default='DARTS', help='which architecture to use')
parser.add_argument(
'--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument(
'--lr_exp_decay',
action='store_true',
default=False,
help='use exponential_decay learning_rate')
parser.add_argument('--mix_alpha', type=float, default=0.5, help='mixup alpha')
parser.add_argument(
'--lrc_loss_lambda', default=0, type=float, help='lrc_loss_lambda')
parser.add_argument(
'--loss_type',
default=1,
type=float,
help='loss_type 0: cross entropy 1: multi margin loss 2: max margin loss')
args = parser.parse_args()
CIFAR_CLASSES = 10
dataset_train_size = 50000
image_size = 32
def main():
image_shape = [3, image_size, image_size]
devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(","))
logging.info("args = %s", args)
genotype = eval("genotypes.%s" % args.arch)
model = Network(args.init_channels, CIFAR_CLASSES, args.layers,
args.auxiliary, genotype)
steps_one_epoch = dataset_train_size / (devices_num * args.batch_size)
train(model, args, image_shape, steps_one_epoch)
def build_program(main_prog, startup_prog, args, is_train, model, im_shape,
steps_one_epoch):
out = []
with fluid.program_guard(main_prog, startup_prog):
py_reader = model.build_input(im_shape, args.batch_size, is_train)
if is_train:
with fluid.unique_name.guard():
loss = model.train_model(py_reader, args.init_channels,
args.auxiliary, args.auxiliary_weight,
args.batch_size, args.lrc_loss_lambda)
optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay(args.learning_rate, \
args.epochs, steps_one_epoch),
regularization=fluid.regularizer.L2Decay(\
args.weight_decay),
momentum=args.momentum)
optimizer.minimize(loss)
out = [py_reader, loss]
else:
with fluid.unique_name.guard():
loss, acc_1, acc_5 = model.test_model(py_reader,
args.init_channels)
out = [py_reader, loss, acc_1, acc_5]
return out
def train(model, args, im_shape, steps_one_epoch):
train_startup_prog = fluid.Program()
test_startup_prog = fluid.Program()
train_prog = fluid.Program()
test_prog = fluid.Program()
train_py_reader, loss_train = build_program(train_prog, train_startup_prog,
args, True, model, im_shape,
steps_one_epoch)
test_py_reader, loss_test, acc_1, acc_5 = build_program(
test_prog, test_startup_prog, args, False, model, im_shape,
steps_one_epoch)
test_prog = test_prog.clone(for_test=True)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(train_startup_prog)
exe.run(test_startup_prog)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 1
train_exe = fluid.ParallelExecutor(
main_program=train_prog,
use_cuda=True,
loss_name=loss_train.name,
exec_strategy=exec_strategy)
train_reader = reader.train10(args)
test_reader = reader.test10(args)
train_py_reader.decorate_paddle_reader(train_reader)
test_py_reader.decorate_paddle_reader(test_reader)
fluid.clip.set_gradient_clip(fluid.clip.GradientClipByNorm(args.grad_clip))
fluid.memory_optimize(fluid.default_main_program())
def save_model(postfix, main_prog):
model_path = os.path.join(args.model_path, postfix)
if os.path.isdir(model_path):
shutil.rmtree(model_path)
fluid.io.save_persistables(exe, model_path, main_program=main_prog)
def test(epoch_id):
test_fetch_list = [loss_test, acc_1, acc_5]
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
test_py_reader.start()
test_start_time = time.time()
step_id = 0
try:
while True:
prev_test_start_time = test_start_time
test_start_time = time.time()
loss_test_v, acc_1_v, acc_5_v = exe.run(
test_prog, fetch_list=test_fetch_list)
objs.update(np.array(loss_test_v), args.batch_size)
top1.update(np.array(acc_1_v), args.batch_size)
top5.update(np.array(acc_5_v), args.batch_size)
if step_id % args.report_freq == 0:
print("Epoch {}, Step {}, acc_1 {}, acc_5 {}, time {}".
format(epoch_id, step_id,
np.array(acc_1_v),
np.array(acc_5_v), test_start_time -
prev_test_start_time))
step_id += 1
except fluid.core.EOFException:
test_py_reader.reset()
print("Epoch {0}, top1 {1}, top5 {2}".format(epoch_id, top1.avg,
top5.avg))
train_fetch_list = [loss_train]
epoch_start_time = time.time()
for epoch_id in range(args.epochs):
model.drop_path_prob = args.drop_path_prob * epoch_id / args.epochs
train_py_reader.start()
epoch_end_time = time.time()
if epoch_id > 0:
print("Epoch {}, total time {}".format(epoch_id - 1, epoch_end_time
- epoch_start_time))
epoch_start_time = epoch_end_time
epoch_end_time
start_time = time.time()
step_id = 0
try:
while True:
prev_start_time = start_time
start_time = time.time()
loss_v, = train_exe.run(
fetch_list=[v.name for v in train_fetch_list])
print("Epoch {}, Step {}, loss {}, time {}".format(epoch_id, step_id, \
np.array(loss_v).mean(), start_time-prev_start_time))
step_id += 1
sys.stdout.flush()
except fluid.core.EOFException:
train_py_reader.reset()
if epoch_id % 50 == 0 or epoch_id == args.epochs - 1:
save_model(str(epoch_id), train_prog)
test(epoch_id)
if __name__ == '__main__':
main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
import os
import sys
import time
import math
import numpy as np
def mixup_data(x, y, batch_size, alpha=1.0):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
index = np.random.permutation(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x.astype('float32'), y_a.astype('int64'),\
y_b.astype('int64'), np.array(lam, dtype='float32')
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册