Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f8e8fb5c
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f8e8fb5c
编写于
2月 03, 2019
作者:
Q
qingqing01
提交者:
GitHub
2月 03, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine .gitignore and fix the revert PR (#1744)
上级
dbc24a3b
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
575 addition
and
30 deletion
+575
-30
.gitignore
.gitignore
+0
-28
fluid/PaddleCV/HiNAS_models/build/__init__.py
fluid/PaddleCV/HiNAS_models/build/__init__.py
+0
-0
fluid/PaddleCV/HiNAS_models/build/layers.py
fluid/PaddleCV/HiNAS_models/build/layers.py
+214
-0
fluid/PaddleCV/HiNAS_models/build/ops.py
fluid/PaddleCV/HiNAS_models/build/ops.py
+117
-0
fluid/PaddleCV/HiNAS_models/build/resnet_base.py
fluid/PaddleCV/HiNAS_models/build/resnet_base.py
+109
-0
fluid/PaddleCV/HiNAS_models/build/vgg_base.py
fluid/PaddleCV/HiNAS_models/build/vgg_base.py
+70
-0
fluid/PaddleNLP/sequence_tagging_for_ner/train.py
fluid/PaddleNLP/sequence_tagging_for_ner/train.py
+3
-2
fluid/PaddleNLP/text_classification/async_executor/data_generator/build_raw_data.py
...ification/async_executor/data_generator/build_raw_data.py
+62
-0
未找到文件。
.gitignore
浏览文件 @
f8e8fb5c
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
*.DS_Store
*.vs
build/
build_doc/
*.user
.vscode
.idea
.project
.cproject
.pydevproject
.settings/
*.pyc
CMakeSettings.json
Makefile
.test_env/
third_party/
*~
bazel-*
third_party/
build_*
# clion workspace.
cmake-build-*
model_test
\ No newline at end of file
fluid/PaddleCV/HiNAS_models/build/__init__.py
0 → 100755
浏览文件 @
f8e8fb5c
fluid/PaddleCV/HiNAS_models/build/layers.py
0 → 100755
浏览文件 @
f8e8fb5c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
operator
import
numpy
as
np
import
paddle.fluid
as
fluid
from
absl
import
flags
FLAGS
=
flags
.
FLAGS
flags
.
DEFINE_float
(
"bn_decay"
,
0.9
,
"batch norm decay"
)
flags
.
DEFINE_float
(
"dropout_rate"
,
0.5
,
"dropout rate"
)
def
calc_padding
(
img_width
,
stride
,
dilation
,
filter_width
):
""" calculate pixels to padding in order to keep input/output size same. """
filter_width
=
dilation
*
(
filter_width
-
1
)
+
1
if
img_width
%
stride
==
0
:
pad_along_width
=
max
(
filter_width
-
stride
,
0
)
else
:
pad_along_width
=
max
(
filter_width
-
(
img_width
%
stride
),
0
)
return
pad_along_width
//
2
,
pad_along_width
-
pad_along_width
//
2
def
conv
(
inputs
,
filters
,
kernel
,
strides
=
(
1
,
1
),
dilation
=
(
1
,
1
),
num_groups
=
1
,
conv_param
=
None
):
""" normal conv layer """
if
isinstance
(
kernel
,
(
tuple
,
list
)):
n
=
operator
.
mul
(
*
kernel
)
*
inputs
.
shape
[
1
]
else
:
n
=
kernel
*
kernel
*
inputs
.
shape
[
1
]
# pad input
padding
=
(
0
,
0
,
0
,
0
)
\
+
calc_padding
(
inputs
.
shape
[
2
],
strides
[
0
],
dilation
[
0
],
kernel
[
0
])
\
+
calc_padding
(
inputs
.
shape
[
3
],
strides
[
1
],
dilation
[
1
],
kernel
[
1
])
if
sum
(
padding
)
>
0
:
inputs
=
fluid
.
layers
.
pad
(
inputs
,
padding
,
0
)
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
scale
=
np
.
sqrt
(
2.0
/
n
)),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
FLAGS
.
weight_decay
))
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
))
return
fluid
.
layers
.
conv2d
(
inputs
,
filters
,
kernel
,
stride
=
strides
,
padding
=
0
,
dilation
=
dilation
,
groups
=
num_groups
,
param_attr
=
param_attr
if
conv_param
is
None
else
conv_param
,
use_cudnn
=
False
if
num_groups
==
inputs
.
shape
[
1
]
==
filters
else
True
,
bias_attr
=
bias_attr
,
act
=
None
)
def
sep
(
inputs
,
filters
,
kernel
,
strides
=
(
1
,
1
),
dilation
=
(
1
,
1
)):
""" Separable convolution layer """
if
isinstance
(
kernel
,
(
tuple
,
list
)):
n_depth
=
operator
.
mul
(
*
kernel
)
else
:
n_depth
=
kernel
*
kernel
n_point
=
inputs
.
shape
[
1
]
if
isinstance
(
strides
,
(
tuple
,
list
)):
multiplier
=
strides
[
0
]
else
:
multiplier
=
strides
depthwise_param
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
scale
=
np
.
sqrt
(
2.0
/
n_depth
)),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
FLAGS
.
weight_decay
))
pointwise_param
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
scale
=
np
.
sqrt
(
2.0
/
n_point
)),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
FLAGS
.
weight_decay
))
depthwise_conv
=
conv
(
inputs
=
inputs
,
kernel
=
kernel
,
filters
=
int
(
filters
*
multiplier
),
strides
=
strides
,
dilation
=
dilation
,
num_groups
=
int
(
filters
*
multiplier
),
conv_param
=
depthwise_param
)
return
conv
(
inputs
=
depthwise_conv
,
kernel
=
(
1
,
1
),
filters
=
int
(
filters
*
multiplier
),
strides
=
(
1
,
1
),
dilation
=
dilation
,
conv_param
=
pointwise_param
)
def
maxpool
(
inputs
,
kernel
,
strides
=
(
1
,
1
)):
padding
=
(
0
,
0
,
0
,
0
)
\
+
calc_padding
(
inputs
.
shape
[
2
],
strides
[
0
],
1
,
kernel
[
0
])
\
+
calc_padding
(
inputs
.
shape
[
3
],
strides
[
1
],
1
,
kernel
[
1
])
if
sum
(
padding
)
>
0
:
inputs
=
fluid
.
layers
.
pad
(
inputs
,
padding
,
0
)
return
fluid
.
layers
.
pool2d
(
inputs
,
kernel
,
'max'
,
strides
,
pool_padding
=
0
,
ceil_mode
=
False
)
def
avgpool
(
inputs
,
kernel
,
strides
=
(
1
,
1
)):
padding_pixel
=
(
0
,
0
,
0
,
0
)
padding_pixel
+=
calc_padding
(
inputs
.
shape
[
2
],
strides
[
0
],
1
,
kernel
[
0
])
padding_pixel
+=
calc_padding
(
inputs
.
shape
[
3
],
strides
[
1
],
1
,
kernel
[
1
])
if
padding_pixel
[
4
]
==
padding_pixel
[
5
]
and
padding_pixel
[
6
]
==
padding_pixel
[
7
]:
# same padding pixel num on all sides.
return
fluid
.
layers
.
pool2d
(
inputs
,
kernel
,
'avg'
,
strides
,
pool_padding
=
(
padding_pixel
[
4
],
padding_pixel
[
6
]),
ceil_mode
=
False
)
elif
padding_pixel
[
4
]
+
1
==
padding_pixel
[
5
]
and
padding_pixel
[
6
]
+
1
==
padding_pixel
[
7
]
\
and
strides
==
(
1
,
1
):
# different padding size: first pad then crop.
x
=
fluid
.
layers
.
pool2d
(
inputs
,
kernel
,
'avg'
,
strides
,
pool_padding
=
(
padding_pixel
[
5
],
padding_pixel
[
7
]),
ceil_mode
=
False
)
x_shape
=
x
.
shape
return
fluid
.
layers
.
crop
(
x
,
shape
=
(
-
1
,
x_shape
[
1
],
x_shape
[
2
]
-
1
,
x_shape
[
3
]
-
1
),
offsets
=
(
0
,
0
,
1
,
1
))
else
:
# not support. use padding-zero and pool2d.
print
(
"Warning: use zero-padding in avgpool"
)
outputs
=
fluid
.
layers
.
pad
(
inputs
,
padding_pixel
,
0
)
return
fluid
.
layers
.
pool2d
(
outputs
,
kernel
,
'avg'
,
strides
,
pool_padding
=
0
,
ceil_mode
=
False
)
def
global_avgpool
(
inputs
):
return
fluid
.
layers
.
pool2d
(
inputs
,
1
,
'avg'
,
1
,
pool_padding
=
0
,
global_pooling
=
True
,
ceil_mode
=
True
)
def
fully_connected
(
inputs
,
units
):
n
=
inputs
.
shape
[
1
]
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
scale
=
np
.
sqrt
(
2.0
/
n
)),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
FLAGS
.
weight_decay
))
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
))
return
fluid
.
layers
.
fc
(
inputs
,
units
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
def
bn_relu
(
inputs
):
""" batch norm + rely layer """
output
=
fluid
.
layers
.
batch_norm
(
inputs
,
momentum
=
FLAGS
.
bn_decay
,
epsilon
=
0.001
,
data_layout
=
"NCHW"
)
return
fluid
.
layers
.
relu
(
output
)
def
dropout
(
inputs
):
""" dropout layer """
return
fluid
.
layers
.
dropout
(
inputs
,
dropout_prob
=
FLAGS
.
dropout_rate
)
fluid/PaddleCV/HiNAS_models/build/ops.py
0 → 100755
浏览文件 @
f8e8fb5c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
build.layers
as
layers
def
conv_1x1
(
inputs
,
downsample
=
False
):
return
conv_base
(
inputs
,
(
1
,
1
),
downsample
=
downsample
)
def
conv_2x2
(
inputs
,
downsample
=
False
):
return
conv_base
(
inputs
,
(
2
,
2
),
downsample
=
downsample
)
def
conv_3x3
(
inputs
,
downsample
=
False
):
return
conv_base
(
inputs
,
(
3
,
3
),
downsample
=
downsample
)
def
dilated_2x2
(
inputs
,
downsample
=
False
):
return
conv_base
(
inputs
,
(
2
,
2
),
(
2
,
2
),
downsample
)
def
conv_1x2_2x1
(
inputs
,
downsample
=
False
):
return
pair_base
(
inputs
,
2
,
downsample
)
def
conv_1x3_3x1
(
inputs
,
downsample
=
False
):
return
pair_base
(
inputs
,
3
,
downsample
)
def
sep_2x2
(
inputs
,
downsample
=
False
):
return
sep_base
(
inputs
,
(
2
,
2
),
downsample
=
downsample
)
def
sep_3x3
(
inputs
,
downsample
=
False
):
return
sep_base
(
inputs
,
(
3
,
3
),
downsample
=
downsample
)
def
maxpool_2x2
(
inputs
,
downsample
=
False
):
return
maxpool_base
(
inputs
,
(
2
,
2
),
downsample
)
def
maxpool_3x3
(
inputs
,
downsample
=
False
):
return
maxpool_base
(
inputs
,
(
3
,
3
),
downsample
)
def
avgpool_2x2
(
inputs
,
downsample
=
False
):
return
avgpool_base
(
inputs
,
(
2
,
2
),
downsample
)
def
avgpool_3x3
(
inputs
,
downsample
=
False
):
return
avgpool_base
(
inputs
,
(
3
,
3
),
downsample
)
def
conv_base
(
inputs
,
kernel
,
dilation
=
(
1
,
1
),
downsample
=
False
):
filters
=
inputs
.
shape
[
1
]
if
downsample
:
output
=
layers
.
conv
(
inputs
,
filters
*
2
,
kernel
,
(
2
,
2
))
else
:
output
=
layers
.
conv
(
inputs
,
filters
,
kernel
,
dilation
=
dilation
)
return
output
def
pair_base
(
inputs
,
kernel
,
downsample
=
False
):
filters
=
inputs
.
shape
[
1
]
if
downsample
:
output
=
layers
.
conv
(
inputs
,
filters
,
(
1
,
kernel
),
(
1
,
2
))
output
=
layers
.
conv
(
output
,
filters
,
(
kernel
,
1
),
(
2
,
1
))
output
=
layers
.
conv
(
output
,
filters
*
2
,
(
1
,
1
))
else
:
output
=
layers
.
conv
(
inputs
,
filters
,
(
1
,
kernel
))
output
=
layers
.
conv
(
output
,
filters
,
(
kernel
,
1
))
return
output
def
sep_base
(
inputs
,
kernel
,
dilation
=
(
1
,
1
),
downsample
=
False
):
filters
=
inputs
.
shape
[
1
]
if
downsample
:
output
=
layers
.
sep
(
inputs
,
filters
*
2
,
kernel
,
(
2
,
2
))
else
:
output
=
layers
.
sep
(
inputs
,
filters
,
kernel
,
dilation
=
dilation
)
return
output
def
maxpool_base
(
inputs
,
kernel
,
downsample
=
False
):
if
downsample
:
filters
=
inputs
.
shape
[
1
]
output
=
layers
.
maxpool
(
inputs
,
kernel
,
(
2
,
2
))
output
=
layers
.
conv
(
output
,
filters
*
2
,
(
1
,
1
))
else
:
output
=
layers
.
maxpool
(
inputs
,
kernel
)
return
output
def
avgpool_base
(
inputs
,
kernel
,
downsample
=
False
):
if
downsample
:
filters
=
inputs
.
shape
[
1
]
output
=
layers
.
avgpool
(
inputs
,
kernel
,
(
2
,
2
))
output
=
layers
.
conv
(
output
,
filters
*
2
,
(
1
,
1
))
else
:
output
=
layers
.
avgpool
(
inputs
,
kernel
)
return
output
fluid/PaddleCV/HiNAS_models/build/resnet_base.py
0 → 100755
浏览文件 @
f8e8fb5c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
absl
import
flags
import
build.layers
as
layers
import
build.ops
as
_ops
FLAGS
=
flags
.
FLAGS
flags
.
DEFINE_integer
(
"num_stages"
,
3
,
"number of stages"
)
flags
.
DEFINE_integer
(
"num_blocks"
,
5
,
"number of blocks per stage"
)
flags
.
DEFINE_integer
(
"num_ops"
,
2
,
"number of operations per block"
)
flags
.
DEFINE_integer
(
"width"
,
64
,
"network width"
)
flags
.
DEFINE_string
(
"downsample"
,
"pool"
,
"conv or pool"
)
num_classes
=
10
ops
=
[
_ops
.
conv_1x1
,
_ops
.
conv_2x2
,
_ops
.
conv_3x3
,
_ops
.
dilated_2x2
,
_ops
.
conv_1x2_2x1
,
_ops
.
conv_1x3_3x1
,
_ops
.
sep_2x2
,
_ops
.
sep_3x3
,
_ops
.
maxpool_2x2
,
_ops
.
maxpool_3x3
,
_ops
.
avgpool_2x2
,
_ops
.
avgpool_3x3
,
]
def
net
(
inputs
,
tokens
):
""" build network with skip links """
x
=
layers
.
conv
(
inputs
,
FLAGS
.
width
,
(
3
,
3
))
num_ops
=
FLAGS
.
num_blocks
*
FLAGS
.
num_ops
x
=
stage
(
x
,
tokens
[:
num_ops
],
pre_activation
=
True
)
for
i
in
range
(
1
,
FLAGS
.
num_stages
):
x
=
stage
(
x
,
tokens
[
i
*
num_ops
:(
i
+
1
)
*
num_ops
],
downsample
=
True
)
x
=
layers
.
bn_relu
(
x
)
x
=
layers
.
global_avgpool
(
x
)
x
=
layers
.
dropout
(
x
)
logits
=
layers
.
fully_connected
(
x
,
num_classes
)
return
fluid
.
layers
.
softmax
(
logits
)
def
stage
(
x
,
tokens
,
pre_activation
=
False
,
downsample
=
False
):
""" build network's stage. Stage consists of blocks """
x
=
block
(
x
,
tokens
[:
FLAGS
.
num_ops
],
pre_activation
,
downsample
)
for
i
in
range
(
1
,
FLAGS
.
num_blocks
):
print
(
"-"
*
12
)
x
=
block
(
x
,
tokens
[
i
*
FLAGS
.
num_ops
:(
i
+
1
)
*
FLAGS
.
num_ops
])
print
(
"="
*
12
)
return
x
def
block
(
x
,
tokens
,
pre_activation
=
False
,
downsample
=
False
):
""" build block. """
if
pre_activation
:
x
=
layers
.
bn_relu
(
x
)
res
=
x
else
:
res
=
x
x
=
layers
.
bn_relu
(
x
)
x
=
ops
[
tokens
[
0
]](
x
,
downsample
)
print
(
"%s
\t
-> shape %s"
%
(
ops
[
0
].
__name__
,
x
.
shape
))
for
token
in
tokens
[
1
:]:
x
=
layers
.
bn_relu
(
x
)
x
=
ops
[
token
](
x
)
print
(
"%s
\t
-> shape %s"
%
(
ops
[
token
].
__name__
,
x
.
shape
))
if
downsample
:
filters
=
res
.
shape
[
1
]
if
FLAGS
.
downsample
==
"conv"
:
res
=
layers
.
conv
(
res
,
filters
*
2
,
(
1
,
1
),
(
2
,
2
))
elif
FLAGS
.
downsample
==
"pool"
:
res
=
layers
.
avgpool
(
res
,
(
2
,
2
),
(
2
,
2
))
res
=
fluid
.
layers
.
pad
(
res
,
(
0
,
0
,
filters
//
2
,
filters
//
2
,
0
,
0
,
0
,
0
))
else
:
raise
NotImplementedError
return
x
+
res
fluid/PaddleCV/HiNAS_models/build/vgg_base.py
0 → 100755
浏览文件 @
f8e8fb5c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
absl
import
flags
import
build.layers
as
layers
import
build.ops
as
_ops
FLAGS
=
flags
.
FLAGS
flags
.
DEFINE_integer
(
"num_stages"
,
5
,
"number of stages"
)
flags
.
DEFINE_integer
(
"width"
,
64
,
"network width"
)
num_classes
=
10
ops
=
[
_ops
.
conv_1x1
,
#0
_ops
.
conv_2x2
,
#1
_ops
.
conv_3x3
,
#2
_ops
.
dilated_2x2
,
#3
_ops
.
conv_1x2_2x1
,
#4
_ops
.
conv_1x3_3x1
,
#5
_ops
.
sep_2x2
,
#6
_ops
.
sep_3x3
,
#7
_ops
.
maxpool_2x2
,
#8
_ops
.
maxpool_3x3
,
_ops
.
avgpool_2x2
,
#10
_ops
.
avgpool_3x3
,
]
def
net
(
inputs
,
tokens
):
depth
=
len
(
tokens
)
q
,
r
=
divmod
(
depth
+
1
,
FLAGS
.
num_stages
)
downsample_steps
=
[
i
*
q
+
max
(
0
,
i
+
r
-
FLAGS
.
num_stages
+
1
)
-
2
for
i
in
range
(
1
,
FLAGS
.
num_stages
)
]
x
=
layers
.
conv
(
inputs
,
FLAGS
.
width
,
(
3
,
3
))
x
=
layers
.
bn_relu
(
x
)
for
i
,
token
in
enumerate
(
tokens
):
downsample
=
i
in
downsample_steps
x
=
ops
[
token
](
x
,
downsample
)
print
(
"%s
\t
-> shape %s"
%
(
ops
[
token
].
__name__
,
x
.
shape
))
if
downsample
:
print
(
"="
*
12
)
x
=
layers
.
bn_relu
(
x
)
x
=
layers
.
global_avgpool
(
x
)
x
=
layers
.
dropout
(
x
)
logits
=
layers
.
fully_connected
(
x
,
num_classes
)
return
fluid
.
layers
.
softmax
(
logits
)
fluid/PaddleNLP/sequence_tagging_for_ner/train.py
浏览文件 @
f8e8fb5c
...
...
@@ -136,8 +136,9 @@ def main(train_data_file,
" pass_f1_score:"
+
str
(
test_pass_f1_score
))
save_dirname
=
os
.
path
.
join
(
model_save_dir
,
"params_pass_%d"
%
pass_id
)
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word'
,
'mark'
],
crf_decode
,
exe
)
if
"CE_MODE_X"
not
in
os
.
environ
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word'
,
'mark'
],
crf_decode
,
exe
)
if
"CE_MODE_X"
in
os
.
environ
:
print
(
"kpis train_precision %f"
%
pass_precision
)
...
...
fluid/PaddleNLP/text_classification/async_executor/data_generator/build_raw_data.py
0 → 100644
浏览文件 @
f8e8fb5c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Build raw data
"""
from
__future__
import
print_function
import
sys
import
os
import
random
import
re
data_type
=
sys
.
argv
[
1
]
if
not
(
data_type
==
"train"
or
data_type
==
"test"
):
print
(
"python %s [test/train]"
%
sys
.
argv
[
0
],
file
=
sys
.
stderr
)
sys
.
exit
(
-
1
)
pos_folder
=
"aclImdb/"
+
data_type
+
"/pos/"
neg_folder
=
"aclImdb/"
+
data_type
+
"/neg/"
pos_train_list
=
[(
pos_folder
+
x
,
"1"
)
for
x
in
os
.
listdir
(
pos_folder
)]
neg_train_list
=
[(
neg_folder
+
x
,
"0"
)
for
x
in
os
.
listdir
(
neg_folder
)]
all_train_list
=
pos_train_list
+
neg_train_list
random
.
shuffle
(
all_train_list
)
def
load_dict
(
dictfile
):
"""
Load word id dict
"""
vocab
=
{}
wid
=
0
with
open
(
dictfile
)
as
f
:
for
line
in
f
:
vocab
[
line
.
strip
()]
=
str
(
wid
)
wid
+=
1
return
vocab
vocab
=
load_dict
(
"aclImdb/imdb.vocab"
)
unk_id
=
str
(
len
(
vocab
))
print
(
"vocab size: "
,
len
(
vocab
),
file
=
sys
.
stderr
)
pattern
=
re
.
compile
(
r
'(;|,|\.|\?|!|\s|\(|\))'
)
for
fitem
in
all_train_list
:
label
=
str
(
fitem
[
1
])
fname
=
fitem
[
0
]
with
open
(
fname
)
as
f
:
sent
=
f
.
readline
().
lower
().
replace
(
"<br />"
,
" "
).
strip
()
out_s
=
"%s | %s"
%
(
sent
,
label
)
print
(
out_s
,
file
=
sys
.
stdout
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录