提交 8666c629 编写于 作者: R ranqiu

Fix bugs of dssm

上级 7631f3b4
......@@ -13,7 +13,7 @@ DSSM \[[1](##参考文献)\]是微软研究院13年提出来的经典的语义
DSSM 已经发展成了一个框架,可以很自然地建模两个记录之间的距离关系,
例如对于文本相关性问题,可以用余弦相似度 (cosin similarity) 来刻画语义距离;
而对于搜索引擎的结果排序,可以在DSSM上接上Rank损失训练一个排序模型。
而对于搜索引擎的结果排序,可以在DSSM上接上Rank损失训练一个排序模型。
## 模型简介
在原论文\[[1](#参考文献)\]中,DSSM模型用来衡量用户搜索词 Query 和文档集合 Documents 之间隐含的语义关系,模型结构如下
......@@ -165,7 +165,13 @@ def create_rnn(self, emb, prefix=''):
'''
A GRU sentence vector learner.
'''
gru = paddle.layer.gru_memory(input=emb,)
gru = paddle.networks.simple_gru(
input=emb,
size=self.dnn_dims[1],
mixed_param_attr=ParamAttr(name='%s_gru_mixed.w' % prefix),
mixed_bias_param_attr=ParamAttr(name="%s_gru_mixed.b" % prefix),
gru_param_attr=ParamAttr(name='%s_gru.w' % prefix),
gru_bias_attr=ParamAttr(name="%s_gru.b" % prefix))
sent_vec = paddle.layer.last_seq(gru)
return sent_vec
```
......@@ -184,7 +190,11 @@ def create_fc(self, emb, prefix=''):
'''
_input_layer = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
fc = paddle.layer.fc(input=_input_layer, size=self.dnn_dims[1])
fc = paddle.layer.fc(
input=_input_layer,
size=self.dnn_dims[1],
param_attr=ParamAttr(name='%s_fc.w' % prefix),
bias_attr=ParamAttr(name="%s_fc.b" % prefix))
return fc
```
......@@ -206,7 +216,6 @@ def create_dnn(self, sent_vec, prefix):
fc = paddle.layer.fc(
input=_input_layer,
size=dim,
name=name,
act=paddle.activation.Tanh(),
param_attr=ParamAttr(name='%s.w' % name),
bias_attr=ParamAttr(name='%s.b' % name),
......@@ -244,9 +253,9 @@ def _build_classification_or_regression_model(self, is_classification):
if is_classification else paddle.data_type.dense_input)
prefixs = '_ _'.split(
) if self.share_semantic_generator else 'left right'.split()
) if self.share_semantic_generator else 'source target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'left right'.split()
) if self.share_embed else 'source target'.split()
word_vecs = []
for id, input in enumerate([source, target]):
......@@ -258,16 +267,21 @@ def _build_classification_or_regression_model(self, is_classification):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
concated_vector = paddle.layer.concat(semantics)
prediction = paddle.layer.fc(
input=concated_vector,
size=self.class_num,
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(
input=prediction,
label=label) if is_classification else paddle.layer.mse_cost(
prediction, label)
return cost, prediction, label
if is_classification:
concated_vector = paddle.layer.concat(semantics)
prediction = paddle.layer.fc(
input=concated_vector,
size=self.class_num,
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(
input=prediction, label=label)
else:
prediction = paddle.layer.cos_sim(*semantics)
cost = paddle.layer.square_error_cost(prediction, label)
if not self.is_infer:
return cost, prediction, label
return prediction
```
### Pairwise Rank实现
Pairwise Rank复用上面的DNN结构,同一个source对两个target求相似度打分,
......@@ -297,7 +311,7 @@ def _build_rank_model(self):
name='label_input', type=paddle.data_type.integer_value(1))
prefixs = '_ _ _'.split(
) if self.share_semantic_generator else 'source left right'.split()
) if self.share_semantic_generator else 'source target target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target target'.split()
......
......@@ -96,14 +96,24 @@ class DSSM(object):
'''
_input_layer = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
fc = paddle.layer.fc(input=_input_layer, size=self.dnn_dims[1])
fc = paddle.layer.fc(
input=_input_layer,
size=self.dnn_dims[1],
param_attr=ParamAttr(name='%s_fc.w' % prefix),
bias_attr=ParamAttr(name="%s_fc.b" % prefix))
return fc
def create_rnn(self, emb, prefix=''):
'''
A GRU sentence vector learner.
'''
gru = paddle.networks.simple_gru(input=emb, size=256)
gru = paddle.networks.simple_gru(
input=emb,
size=self.dnn_dims[1],
mixed_param_attr=ParamAttr(name='%s_gru_mixed.w' % prefix),
mixed_bias_param_attr=ParamAttr(name="%s_gru_mixed.b" % prefix),
gru_param_attr=ParamAttr(name='%s_gru.w' % prefix),
gru_bias_attr=ParamAttr(name="%s_gru.b" % prefix))
sent_vec = paddle.layer.last_seq(gru)
return sent_vec
......@@ -147,7 +157,6 @@ class DSSM(object):
logger.info("create fc layer [%s] which dimention is %d" %
(name, dim))
fc = paddle.layer.fc(
name=name,
input=_input_layer,
size=dim,
act=paddle.activation.Tanh(),
......@@ -195,7 +204,7 @@ class DSSM(object):
name='label_input', type=paddle.data_type.integer_value(1))
prefixs = '_ _ _'.split(
) if self.share_semantic_generator else 'source left right'.split()
) if self.share_semantic_generator else 'source target target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target target'.split()
......@@ -249,9 +258,9 @@ class DSSM(object):
if is_classification else paddle.data_type.dense_vector(1))
prefixs = '_ _'.split(
) if self.share_semantic_generator else 'left right'.split()
) if self.share_semantic_generator else 'source target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'left right'.split()
) if self.share_embed else 'source target'.split()
word_vecs = []
for id, input in enumerate([source, target]):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册