Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
8666c629
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8666c629
编写于
10月 30, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix bugs of dssm
上级
7631f3b4
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
46 addition
and
23 deletion
+46
-23
dssm/README.cn.md
dssm/README.cn.md
+31
-17
dssm/network_conf.py
dssm/network_conf.py
+15
-6
未找到文件。
dssm/README.cn.md
浏览文件 @
8666c629
...
...
@@ -13,7 +13,7 @@ DSSM \[[1](##参考文献)\]是微软研究院13年提出来的经典的语义
DSSM 已经发展成了一个框架,可以很自然地建模两个记录之间的距离关系,
例如对于文本相关性问题,可以用余弦相似度 (cosin similarity) 来刻画语义距离;
而对于搜索引擎的结果排序,可以在DSSM上接上Rank损失训练
处
一个排序模型。
而对于搜索引擎的结果排序,可以在DSSM上接上Rank损失训练
出
一个排序模型。
## 模型简介
在原论文
\[
[
1
](
#参考文献
)
\]
中,DSSM模型用来衡量用户搜索词 Query 和文档集合 Documents 之间隐含的语义关系,模型结构如下
...
...
@@ -165,7 +165,13 @@ def create_rnn(self, emb, prefix=''):
'''
A GRU sentence vector learner.
'''
gru
=
paddle
.
layer
.
gru_memory
(
input
=
emb
,)
gru
=
paddle
.
networks
.
simple_gru
(
input
=
emb
,
size
=
self
.
dnn_dims
[
1
],
mixed_param_attr
=
ParamAttr
(
name
=
'%s_gru_mixed.w'
%
prefix
),
mixed_bias_param_attr
=
ParamAttr
(
name
=
"%s_gru_mixed.b"
%
prefix
),
gru_param_attr
=
ParamAttr
(
name
=
'%s_gru.w'
%
prefix
),
gru_bias_attr
=
ParamAttr
(
name
=
"%s_gru.b"
%
prefix
))
sent_vec
=
paddle
.
layer
.
last_seq
(
gru
)
return
sent_vec
```
...
...
@@ -184,7 +190,11 @@ def create_fc(self, emb, prefix=''):
'''
_input_layer
=
paddle
.
layer
.
pooling
(
input
=
emb
,
pooling_type
=
paddle
.
pooling
.
Max
())
fc
=
paddle
.
layer
.
fc
(
input
=
_input_layer
,
size
=
self
.
dnn_dims
[
1
])
fc
=
paddle
.
layer
.
fc
(
input
=
_input_layer
,
size
=
self
.
dnn_dims
[
1
],
param_attr
=
ParamAttr
(
name
=
'%s_fc.w'
%
prefix
),
bias_attr
=
ParamAttr
(
name
=
"%s_fc.b"
%
prefix
))
return
fc
```
...
...
@@ -206,7 +216,6 @@ def create_dnn(self, sent_vec, prefix):
fc
=
paddle
.
layer
.
fc
(
input
=
_input_layer
,
size
=
dim
,
name
=
name
,
act
=
paddle
.
activation
.
Tanh
(),
param_attr
=
ParamAttr
(
name
=
'%s.w'
%
name
),
bias_attr
=
ParamAttr
(
name
=
'%s.b'
%
name
),
...
...
@@ -244,9 +253,9 @@ def _build_classification_or_regression_model(self, is_classification):
if
is_classification
else
paddle
.
data_type
.
dense_input
)
prefixs
=
'_ _'
.
split
(
)
if
self
.
share_semantic_generator
else
'
left righ
t'
.
split
()
)
if
self
.
share_semantic_generator
else
'
source targe
t'
.
split
()
embed_prefixs
=
'_ _'
.
split
(
)
if
self
.
share_embed
else
'
left righ
t'
.
split
()
)
if
self
.
share_embed
else
'
source targe
t'
.
split
()
word_vecs
=
[]
for
id
,
input
in
enumerate
([
source
,
target
]):
...
...
@@ -258,16 +267,21 @@ def _build_classification_or_regression_model(self, is_classification):
x
=
self
.
model_arch_creater
(
input
,
prefix
=
prefixs
[
id
])
semantics
.
append
(
x
)
if
is_classification
:
concated_vector
=
paddle
.
layer
.
concat
(
semantics
)
prediction
=
paddle
.
layer
.
fc
(
input
=
concated_vector
,
size
=
self
.
class_num
,
act
=
paddle
.
activation
.
Softmax
())
cost
=
paddle
.
layer
.
classification_cost
(
input
=
prediction
,
label
=
label
)
if
is_classification
else
paddle
.
layer
.
mse_cost
(
prediction
,
label
)
input
=
prediction
,
label
=
label
)
else
:
prediction
=
paddle
.
layer
.
cos_sim
(
*
semantics
)
cost
=
paddle
.
layer
.
square_error_cost
(
prediction
,
label
)
if
not
self
.
is_infer
:
return
cost
,
prediction
,
label
return
prediction
```
### Pairwise Rank实现
Pairwise Rank复用上面的DNN结构,同一个source对两个target求相似度打分,
...
...
@@ -297,7 +311,7 @@ def _build_rank_model(self):
name
=
'label_input'
,
type
=
paddle
.
data_type
.
integer_value
(
1
))
prefixs
=
'_ _ _'
.
split
(
)
if
self
.
share_semantic_generator
else
'source
left righ
t'
.
split
()
)
if
self
.
share_semantic_generator
else
'source
target targe
t'
.
split
()
embed_prefixs
=
'_ _'
.
split
(
)
if
self
.
share_embed
else
'source target target'
.
split
()
...
...
dssm/network_conf.py
浏览文件 @
8666c629
...
...
@@ -96,14 +96,24 @@ class DSSM(object):
'''
_input_layer
=
paddle
.
layer
.
pooling
(
input
=
emb
,
pooling_type
=
paddle
.
pooling
.
Max
())
fc
=
paddle
.
layer
.
fc
(
input
=
_input_layer
,
size
=
self
.
dnn_dims
[
1
])
fc
=
paddle
.
layer
.
fc
(
input
=
_input_layer
,
size
=
self
.
dnn_dims
[
1
],
param_attr
=
ParamAttr
(
name
=
'%s_fc.w'
%
prefix
),
bias_attr
=
ParamAttr
(
name
=
"%s_fc.b"
%
prefix
))
return
fc
def
create_rnn
(
self
,
emb
,
prefix
=
''
):
'''
A GRU sentence vector learner.
'''
gru
=
paddle
.
networks
.
simple_gru
(
input
=
emb
,
size
=
256
)
gru
=
paddle
.
networks
.
simple_gru
(
input
=
emb
,
size
=
self
.
dnn_dims
[
1
],
mixed_param_attr
=
ParamAttr
(
name
=
'%s_gru_mixed.w'
%
prefix
),
mixed_bias_param_attr
=
ParamAttr
(
name
=
"%s_gru_mixed.b"
%
prefix
),
gru_param_attr
=
ParamAttr
(
name
=
'%s_gru.w'
%
prefix
),
gru_bias_attr
=
ParamAttr
(
name
=
"%s_gru.b"
%
prefix
))
sent_vec
=
paddle
.
layer
.
last_seq
(
gru
)
return
sent_vec
...
...
@@ -147,7 +157,6 @@ class DSSM(object):
logger
.
info
(
"create fc layer [%s] which dimention is %d"
%
(
name
,
dim
))
fc
=
paddle
.
layer
.
fc
(
name
=
name
,
input
=
_input_layer
,
size
=
dim
,
act
=
paddle
.
activation
.
Tanh
(),
...
...
@@ -195,7 +204,7 @@ class DSSM(object):
name
=
'label_input'
,
type
=
paddle
.
data_type
.
integer_value
(
1
))
prefixs
=
'_ _ _'
.
split
(
)
if
self
.
share_semantic_generator
else
'source
left righ
t'
.
split
()
)
if
self
.
share_semantic_generator
else
'source
target targe
t'
.
split
()
embed_prefixs
=
'_ _'
.
split
(
)
if
self
.
share_embed
else
'source target target'
.
split
()
...
...
@@ -249,9 +258,9 @@ class DSSM(object):
if
is_classification
else
paddle
.
data_type
.
dense_vector
(
1
))
prefixs
=
'_ _'
.
split
(
)
if
self
.
share_semantic_generator
else
'
left righ
t'
.
split
()
)
if
self
.
share_semantic_generator
else
'
source targe
t'
.
split
()
embed_prefixs
=
'_ _'
.
split
(
)
if
self
.
share_embed
else
'
left righ
t'
.
split
()
)
if
self
.
share_embed
else
'
source targe
t'
.
split
()
word_vecs
=
[]
for
id
,
input
in
enumerate
([
source
,
target
]):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录