未验证 提交 82532bf0 编写于 作者: X Xing Wu 提交者: GitHub

update lac and seq2seq to api_1.8 (#4604)

* update lac and seq2seq to api_1.8

* update lac and seq2seq to api_1.8

* update lac and seq2seq to api_1.8
上级 56cfb006
...@@ -105,15 +105,15 @@ def create_pyreader(args, ...@@ -105,15 +105,15 @@ def create_pyreader(args,
# create lac pyreader # create lac pyreader
if mode == 'train': if mode == 'train':
pyreader.set_sample_list_generator( pyreader.set_sample_list_generator(
fluid.io.batch( paddle.batch(
fluid.io.shuffle( paddle.reader.shuffle(
reader.file_reader(file_name), reader.file_reader(file_name),
buf_size=args.traindata_shuffle_buffer), buf_size=args.traindata_shuffle_buffer),
batch_size=args.batch_size / device_count), batch_size=args.batch_size / device_count),
places=place) places=place)
else: else:
pyreader.set_sample_list_generator( pyreader.set_sample_list_generator(
fluid.io.batch( paddle.batch(
reader.file_reader( reader.file_reader(
file_name, mode=mode), file_name, mode=mode),
batch_size=args.batch_size / device_count), batch_size=args.batch_size / device_count),
......
...@@ -117,10 +117,10 @@ def do_train(args): ...@@ -117,10 +117,10 @@ def do_train(args):
model="ernie", model="ernie",
place=place) place=place)
clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
optimizer = fluid.optimizer.Adam( optimizer = fluid.optimizer.Adam(
learning_rate=args.base_learning_rate) learning_rate=args.base_learning_rate,
fluid.clip.set_gradient_clip( grad_clip=clip)
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))
optimizer.minimize(train_ret["avg_cost"]) optimizer.minimize(train_ret["avg_cost"])
lower_mem, upper_mem, unit = fluid.contrib.memory_usage( lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
......
...@@ -97,14 +97,14 @@ def main(): ...@@ -97,14 +97,14 @@ def main():
dropout=dropout) dropout=dropout)
loss = model.build_graph() loss = model.build_graph()
inference_program = train_program.clone(for_test=True) inference_program = train_program.clone(for_test=True)
fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm( clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=max_grad_norm)) clip_norm=max_grad_norm)
lr = args.learning_rate lr = args.learning_rate
opt_type = args.optimizer opt_type = args.optimizer
if opt_type == "sgd": if opt_type == "sgd":
optimizer = fluid.optimizer.SGD(lr) optimizer = fluid.optimizer.SGD(lr, grad_clip=clip)
elif opt_type == "adam": elif opt_type == "adam":
optimizer = fluid.optimizer.Adam(lr) optimizer = fluid.optimizer.Adam(lr, grad_clip=clip)
else: else:
print("only support [sgd|adam]") print("only support [sgd|adam]")
raise Exception("opt type not support") raise Exception("opt type not support")
......
...@@ -229,7 +229,7 @@ class VAE(object): ...@@ -229,7 +229,7 @@ class VAE(object):
# `sample_output_layer` samples an id from the logits distribution instead of argmax(logits) # `sample_output_layer` samples an id from the logits distribution instead of argmax(logits)
# it will be used within BeamSearchDecoder # it will be used within BeamSearchDecoder
sample_output_layer = lambda x: layers.unsqueeze(layers.one_hot( sample_output_layer = lambda x: layers.unsqueeze(fluid.one_hot(
layers.unsqueeze( layers.unsqueeze(
layers.sampling_id( layers.sampling_id(
layers.softmax( layers.softmax(
......
...@@ -89,9 +89,8 @@ def main(): ...@@ -89,9 +89,8 @@ def main():
inference_program = fluid.default_main_program().clone( inference_program = fluid.default_main_program().clone(
for_test=True) for_test=True)
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm( clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=max_grad_norm)) clip_norm=max_grad_norm)
learning_rate = fluid.layers.create_global_var( learning_rate = fluid.layers.create_global_var(
name="learning_rate", name="learning_rate",
...@@ -102,9 +101,9 @@ def main(): ...@@ -102,9 +101,9 @@ def main():
opt_type = args.optimizer opt_type = args.optimizer
if opt_type == "sgd": if opt_type == "sgd":
optimizer = fluid.optimizer.SGD(learning_rate) optimizer = fluid.optimizer.SGD(learning_rate, grad_clip=clip)
elif opt_type == "adam": elif opt_type == "adam":
optimizer = fluid.optimizer.Adam(learning_rate) optimizer = fluid.optimizer.Adam(learning_rate, grad_clip=clip)
else: else:
print("only support [sgd|adam]") print("only support [sgd|adam]")
raise Exception("opt type not support") raise Exception("opt type not support")
...@@ -272,7 +271,7 @@ def main(): ...@@ -272,7 +271,7 @@ def main():
(old_lr, new_lr)) (old_lr, new_lr))
dir_name = args.model_path + "/epoch_" + str(best_epoch_id) dir_name = args.model_path + "/epoch_" + str(best_epoch_id)
fluid.io.load_params(exe, dir_name) fluid.load(main_program, dir_name, exe)
decay_cnt += 1 decay_cnt += 1
if decay_cnt == max_decay: if decay_cnt == max_decay:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册