Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
51b6ecfc
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
51b6ecfc
编写于
3月 09, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Replace callback with decorator.
上级
2b022f0b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
119 addition
and
15 deletion
+119
-15
fluid/rnn_beam_search/attention_seq2seq.py
fluid/rnn_beam_search/attention_seq2seq.py
+101
-5
fluid/rnn_beam_search/beam_search_api.py
fluid/rnn_beam_search/beam_search_api.py
+11
-2
fluid/rnn_beam_search/simple_seq2seq.py
fluid/rnn_beam_search/simple_seq2seq.py
+7
-8
未找到文件。
fluid/rnn_beam_search/attention_seq2seq.py
浏览文件 @
51b6ecfc
...
@@ -181,7 +181,8 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
...
@@ -181,7 +181,8 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
context
=
fluid
.
layers
.
sequence_pool
(
input
=
scaled
,
pool_type
=
'sum'
)
context
=
fluid
.
layers
.
sequence_pool
(
input
=
scaled
,
pool_type
=
'sum'
)
return
context
return
context
def
updater
(
state_cell
):
@
state_cell
.
state_updater
def
state_updater
(
state_cell
):
current_word
=
state_cell
.
get_input
(
'x'
)
current_word
=
state_cell
.
get_input
(
'x'
)
encoder_vec
=
state_cell
.
get_input
(
'encoder_vec'
)
encoder_vec
=
state_cell
.
get_input
(
'encoder_vec'
)
encoder_proj
=
state_cell
.
get_input
(
'encoder_proj'
)
encoder_proj
=
state_cell
.
get_input
(
'encoder_proj'
)
...
@@ -194,8 +195,6 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
...
@@ -194,8 +195,6 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
state_cell
.
set_state
(
'h'
,
h
)
state_cell
.
set_state
(
'h'
,
h
)
state_cell
.
set_state
(
'c'
,
c
)
state_cell
.
set_state
(
'c'
,
c
)
state_cell
.
register_updater
(
updater
)
if
not
is_generating
:
if
not
is_generating
:
trg_word_idx
=
fluid
.
layers
.
data
(
trg_word_idx
=
fluid
.
layers
.
data
(
name
=
'target_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
name
=
'target_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
...
@@ -233,7 +232,68 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
...
@@ -233,7 +232,68 @@ def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
return
avg_cost
,
feeding_list
return
avg_cost
,
feeding_list
else
:
else
:
pass
init_ids
=
fluid
.
layers
.
data
(
name
=
"init_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
2
)
init_scores
=
fluid
.
layers
.
data
(
name
=
"init_scores"
,
shape
=
[
1
],
dtype
=
"float32"
,
lod_level
=
2
)
'''
src_embedding = fluid.layers.embedding(
input=src_word_idx,
size=[source_dict_dim, embedding_dim],
dtype='float32')
'''
src_embedding
=
fluid
.
layers
.
embedding
(
input
=
src_word_idx
,
size
=
[
source_dict_dim
,
embedding_dim
],
dtype
=
'float32'
,
ParamAttr
=
())
decoder
=
BeamSearchDecoder
(
state_cell
,
max_len
=
max_length
)
with
decoder
.
block
():
# encoder_vec = prev_scores
# encoder_proj = prev_scores
prev_ids
=
decoder
.
read_array
(
init
=
init_ids
,
is_ids
=
True
)
prev_scores
=
decoder
.
read_array
(
init
=
init_scores
,
is_scores
=
True
)
# need make sure the weight shared
prev_ids_embedding
=
fluid
.
layers
.
embedding
(
prev_ids
)
prev_h
=
decoder
.
state_cell
.
get_state
(
'h'
)
prev_c
=
decoder
.
state_cell
.
get_state
(
'c'
)
prev_h_expanded
=
fluid
.
layers
.
sequence_expand
(
prev_h
,
prev_scores
)
prev_c_expanded
=
fluid
.
layers
.
sequence_expand
(
prev_c
,
prev_scores
)
decoder
.
state_cell
.
set_state
(
'h'
,
prev_h_expanded
)
decoder
.
state_cell
.
set_state
(
'c'
,
prev_c_expanded
)
decoder
.
state_cell
.
compute_state
(
inputs
=
{
'x'
:
prev_ids_embedding
,
'encoder_vec'
:
None
,
'encoder_proj'
:
None
})
current_state
=
decoder
.
state_cell
.
get_state
(
'h'
)
scores
=
fluid
.
layers
.
fc
(
input
=
current_state
,
size
=
target_dict_dim
,
act
=
'softmax'
)
topk_scores
,
topk_indices
=
fluid
.
layers
.
topk
(
scores
,
k
=
beam_size
)
selected_ids
,
selected_scores
=
fluid
.
layers
.
beam_search
(
prev_ids
,
topk_indices
,
topk_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
decoder
.
state_cell
.
update_states
()
decoder
.
update_array
(
prev_ids
,
selected_ids
)
decoder
.
update_array
(
prev_scores
,
selected_scores
)
translation_ids
,
translation_scores
=
decoder
()
feeding_list
=
[
"source_sequence"
,
"target_sequence"
,
"init_ids"
,
"init_scores"
]
return
translation_ids
,
translation_scores
,
feeding_list
def
to_lodtensor
(
data
,
place
):
def
to_lodtensor
(
data
,
place
):
...
@@ -345,7 +405,43 @@ def train():
...
@@ -345,7 +405,43 @@ def train():
def
infer
():
def
infer
():
pass
translation_ids
,
translation_scores
,
feeding_list
=
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
True
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
(),
print_log
=
False
)
test_batch_generator
=
paddle
.
v2
.
batch
(
paddle
.
v2
.
reader
.
shuffle
(
paddle
.
v2
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
place
=
core
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
for
batch_id
,
data
in
enumerate
(
test_batch_generator
()):
src_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
trg_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
lbl_seq
,
_
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)
fetch_outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
feeding_list
[
0
]:
src_seq
,
feeding_list
[
1
]:
trg_seq
,
feeding_list
[
2
]:
lbl_seq
},
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
fetch_outs
[
0
])
print
(
'pass_id=%d, batch_id=%d, train_loss: %f'
%
(
pass_id
,
batch_id
,
avg_cost_val
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
fluid/rnn_beam_search/beam_search_api.py
浏览文件 @
51b6ecfc
...
@@ -108,6 +108,7 @@ class StateCell(object):
...
@@ -108,6 +108,7 @@ class StateCell(object):
self
.
_in_decoder
=
False
self
.
_in_decoder
=
False
self
.
_states_holder
=
{}
self
.
_states_holder
=
{}
self
.
_switched_decoder
=
False
self
.
_switched_decoder
=
False
self
.
_state_updater
=
None
def
enter_decoder
(
self
,
decoder_obj
):
def
enter_decoder
(
self
,
decoder_obj
):
if
self
.
_in_decoder
==
True
or
self
.
_cur_decoder_obj
is
not
None
:
if
self
.
_in_decoder
==
True
or
self
.
_cur_decoder_obj
is
not
None
:
...
@@ -172,8 +173,16 @@ class StateCell(object):
...
@@ -172,8 +173,16 @@ class StateCell(object):
def
set_state
(
self
,
state_name
,
state_value
):
def
set_state
(
self
,
state_name
,
state_value
):
self
.
_cur_states
[
state_name
]
=
state_value
self
.
_cur_states
[
state_name
]
=
state_value
def
register_updater
(
self
,
state_updater
):
def
state_updater
(
self
,
updater
):
self
.
_state_updater
=
state_updater
self
.
_state_updater
=
updater
def
_decorator
(
state_cell
):
if
state_cell
==
self
:
raise
TypeError
(
'Updater should only accept a StateCell object '
'as argument.'
)
updater
(
state_cell
)
return
_decorator
def
compute_state
(
self
,
inputs
):
def
compute_state
(
self
,
inputs
):
if
self
.
_in_decoder
and
not
self
.
_switched_decoder
:
if
self
.
_in_decoder
and
not
self
.
_switched_decoder
:
...
...
fluid/rnn_beam_search/simple_seq2seq.py
浏览文件 @
51b6ecfc
...
@@ -55,18 +55,17 @@ def encoder():
...
@@ -55,18 +55,17 @@ def encoder():
return
encoder_out
return
encoder_out
def
updater
(
state_cell
):
current_word
=
state_cell
.
get_input
(
'x'
)
prev_h
=
state_cell
.
get_state
(
'h'
)
h
=
pd
.
fc
(
input
=
[
current_word
,
prev_h
],
size
=
decoder_size
,
act
=
'tanh'
)
state_cell
.
set_state
(
'h'
,
h
)
def
decoder_train
(
context
):
def
decoder_train
(
context
):
h
=
InitState
(
init
=
context
)
h
=
InitState
(
init
=
context
)
state_cell
=
StateCell
(
state_cell
=
StateCell
(
cell_size
=
decoder_size
,
inputs
=
{
'x'
:
None
},
states
=
{
'h'
:
h
})
cell_size
=
decoder_size
,
inputs
=
{
'x'
:
None
},
states
=
{
'h'
:
h
})
state_cell
.
register_updater
(
updater
)
@
state_cell
.
state_updater
def
updater
(
state_cell
):
current_word
=
state_cell
.
get_input
(
'x'
)
prev_h
=
state_cell
.
get_state
(
'h'
)
h
=
pd
.
fc
(
input
=
[
current_word
,
prev_h
],
size
=
decoder_size
,
act
=
'tanh'
)
state_cell
.
set_state
(
'h'
,
h
)
# decoder
# decoder
trg_language_word
=
pd
.
data
(
trg_language_word
=
pd
.
data
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录