未验证 提交 48258148 编写于 作者: W Wang Meng 提交者: GitHub

Merge pull request #494 from will-am/update_index

Add index to deepfm in README
...@@ -29,9 +29,10 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式 ...@@ -29,9 +29,10 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式
点击率预估模型预判用户对一条广告点击的概率,对每次广告的点击情况做出预测,是广告技术的核心算法之一。逻谛斯克回归对大规模稀疏特征有着很好的学习能力,在点击率预估任务发展的早期一统天下。近年来,DNN 模型由于其强大的学习能力逐渐接过点击率预估任务的大旗。 点击率预估模型预判用户对一条广告点击的概率,对每次广告的点击情况做出预测,是广告技术的核心算法之一。逻谛斯克回归对大规模稀疏特征有着很好的学习能力,在点击率预估任务发展的早期一统天下。近年来,DNN 模型由于其强大的学习能力逐渐接过点击率预估任务的大旗。
在点击率预估任务中,我们给出谷歌提出的 Wide & Deep 模型。这一模型融合了适用于学习抽象特征的DNN和适用于大规模稀疏特征的逻谛斯克回归两者的优点,可以作为一种相对成熟的模型框架使用,在工业界也有一定的应用 在点击率预估任务中,我们首先给出谷歌提出的 Wide & Deep 模型。这一模型融合了适用于学习抽象特征的DNN和适用于大规模稀疏特征的逻谛斯克回归两者的优点,可以作为一种相对成熟的模型框架使用,在工业界也有一定的应用。同时,我们提供基于因子分解机的深度神经网络模型,该模型融合了因子分解机和深度神经网络,分别建模输入属性之间的低阶交互和高阶交互
- 3.1 [Wide & deep 点击率预估模型](https://github.com/PaddlePaddle/models/tree/develop/ctr) - 3.1 [Wide & deep 点击率预估模型](https://github.com/PaddlePaddle/models/tree/develop/ctr)
- 3.2 [基于深度因子分解机的点击率预估模型](https://github.com/PaddlePaddle/models/tree/develop/deep_fm)
## 4. 文本分类 ## 4. 文本分类
......
...@@ -25,9 +25,10 @@ The language model is important in the field of natural language processing. In ...@@ -25,9 +25,10 @@ The language model is important in the field of natural language processing. In
## 3. Click-Through Rate prediction ## 3. Click-Through Rate prediction
The click-through rate model predicts the probability that a user will click on an ad. This is widely used for advertising technology. Logistic Regression has a good learning performance for large-scale sparse features in the early stages of the development of click-through rate prediction. In recent years, DNN model because of its strong learning ability to gradually take the banner rate of the task of the banner. The click-through rate model predicts the probability that a user will click on an ad. This is widely used for advertising technology. Logistic Regression has a good learning performance for large-scale sparse features in the early stages of the development of click-through rate prediction. In recent years, DNN model because of its strong learning ability to gradually take the banner rate of the task of the banner.
In the example of click-through rate estimates, we give the Google's Wide & Deep model. This model combines the advantages of DNN and the applicable logistic regression model for DNN and large-scale sparse features. In the example of click-through rate estimates, we first give the Google's Wide & Deep model. This model combines the advantages of DNN and the applicable logistic regression model for DNN and large-scale sparse features. Then we provide the deep factorization machine for click-through rate prediction. The deep factorization machine combines the factorization machine and deep neural networks to model both low order and high order interactions of input features.
- 3.1 [Click-Through Rate Model](https://github.com/PaddlePaddle/models/tree/develop/ctr) - 3.1 [Click-Through Rate Model](https://github.com/PaddlePaddle/models/tree/develop/ctr)
- 3.2 [Deep Factorization Machine for Click-Through Rate prediction](https://github.com/PaddlePaddle/models/tree/develop/deep_fm)
## 4. Text classification ## 4. Text classification
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册