未验证 提交 061585ab 编写于 作者: W Wang Meng 提交者: GitHub

Merge pull request #485 from will-am/deep_fm

Implement DeepFM for CTR prediction
# Deep Factorization Machine for Click-Through Rate prediction
## Introduction
This model implements the DeepFM proposed in the following paper:
```text
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li and Xiuqiang He. DeepFM:
A Factorization-Machine based Neural Network for CTR Prediction. Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJCAI-17), 2017
```
The DeepFm combines factorization machine and deep neural networks to model
both low order and high order feature interactions. For details of the
factorization machines, please refer to the paper [factorization
machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
## Dataset
This example uses Criteo dataset which was used for the [Display Advertising
Challenge](https://www.kaggle.com/c/criteo-display-ad-challenge/)
hosted by Kaggle.
Each row is the features for an ad display and the first column is a label
indicating whether this ad has been clicked or not. There are 39 features in
total. 13 features take integer values and the other 26 features are
categorical features. For the test dataset, the labels are omitted.
Download dataset:
```bash
cd data && ./download.sh && cd ..
```
## Model
The DeepFM model is composed of the factorization machine layer (FM) and deep
neural networks (DNN). All the input features are feeded to both FM and DNN.
The output from FM and DNN are combined to form the final output. The embedding
layer for sparse features in the DNN shares the parameters with the latent
vectors (factors) of the FM layer.
The factorization machine layer in PaddlePaddle computes the second order
interactions. The following code example combines the factorization machine
layer and fully connected layer to form the full version of factorization
machine:
```python
def fm_layer(input, factor_size):
first_order = paddle.layer.fc(input=input, size=1, act=paddle.activation.Linear())
second_order = paddle.layer.factorization_machine(input=input, factor_size=factor_size)
fm = paddle.layer.addto(input=[first_order, second_order],
act=paddle.activation.Linear(),
bias_attr=False)
return fm
```
## Data preparation
To preprocess the raw dataset, the integer features are clipped then min-max
normalized to [0, 1] and the categorical features are one-hot encoded. The raw
training dataset are splited such that 90% are used for training and the other
10% are used for validation during training.
```bash
python preprocess.py --datadir ./data/raw --outdir ./data
```
## Train
The command line options for training can be listed by `python train.py -h`.
To train the model:
```bash
python train.py \
--train_data_path data/train.txt \
--test_data_path data/valid.txt \
2>&1 | train.log
```
After training pass 9 batch 40000, the testing AUC is `0.807178` and the testing
cost is `0.445196`.
## Infer
The command line options for infering can be listed by `python infer.py -h`.
To make inference for the test dataset:
```bash
python infer.py \
--model_gz_path models/model-pass-9-batch-10000.tar.gz \
--data_path data/test.txt \
--prediction_output_path ./predict.txt
```
#!/bin/bash
wget --no-check-certificate https://s3-eu-west-1.amazonaws.com/criteo-labs/dac.tar.gz
tar zxf dac.tar.gz
rm -f dac.tar.gz
mkdir raw
mv ./*.txt raw/
import os
import gzip
import argparse
import itertools
import paddle.v2 as paddle
from network_conf import DeepFM
import reader
def parse_args():
parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example")
parser.add_argument(
'--model_gz_path',
type=str,
required=True,
help="The path of model parameters gz file")
parser.add_argument(
'--data_path',
type=str,
required=True,
help="The path of the dataset to infer")
parser.add_argument(
'--prediction_output_path',
type=str,
required=True,
help="The path to output the prediction")
parser.add_argument(
'--factor_size',
type=int,
default=10,
help="The factor size for the factorization machine (default:10)")
return parser.parse_args()
def infer():
args = parse_args()
paddle.init(use_gpu=False, trainer_count=1)
model = DeepFM(args.factor_size, infer=True)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.model_gz_path, 'r'))
inferer = paddle.inference.Inference(
output_layer=model, parameters=parameters)
dataset = reader.Dataset()
infer_reader = paddle.batch(dataset.infer(args.data_path), batch_size=1000)
with open(args.prediction_output_path, 'w') as out:
for id, batch in enumerate(infer_reader()):
res = inferer.infer(input=batch)
predictions = [x for x in itertools.chain.from_iterable(res)]
out.write('\n'.join(map(str, predictions)) + '\n')
if __name__ == '__main__':
infer()
import paddle.v2 as paddle
dense_feature_dim = 13
sparse_feature_dim = 117568
def fm_layer(input, factor_size, fm_param_attr):
first_order = paddle.layer.fc(
input=input, size=1, act=paddle.activation.Linear())
second_order = paddle.layer.factorization_machine(
input=input,
factor_size=factor_size,
act=paddle.activation.Linear(),
param_attr=fm_param_attr)
out = paddle.layer.addto(
input=[first_order, second_order],
act=paddle.activation.Linear(),
bias_attr=False)
return out
def DeepFM(factor_size, infer=False):
dense_input = paddle.layer.data(
name="dense_input",
type=paddle.data_type.dense_vector(dense_feature_dim))
sparse_input = paddle.layer.data(
name="sparse_input",
type=paddle.data_type.sparse_binary_vector(sparse_feature_dim))
sparse_input_ids = [
paddle.layer.data(
name="C" + str(i),
type=paddle.data_type.integer_value(sparse_feature_dim))
for i in range(1, 27)
]
dense_fm = fm_layer(
dense_input,
factor_size,
fm_param_attr=paddle.attr.Param(name="DenseFeatFactors"))
sparse_fm = fm_layer(
sparse_input,
factor_size,
fm_param_attr=paddle.attr.Param(name="SparseFeatFactors"))
def embedding_layer(input):
return paddle.layer.embedding(
input=input,
size=factor_size,
param_attr=paddle.attr.Param(name="SparseFeatFactors"))
sparse_embed_seq = map(embedding_layer, sparse_input_ids)
sparse_embed = paddle.layer.concat(sparse_embed_seq)
fc1 = paddle.layer.fc(
input=[sparse_embed, dense_input],
size=400,
act=paddle.activation.Relu())
fc2 = paddle.layer.fc(input=fc1, size=400, act=paddle.activation.Relu())
fc3 = paddle.layer.fc(input=fc2, size=400, act=paddle.activation.Relu())
predict = paddle.layer.fc(
input=[dense_fm, sparse_fm, fc3],
size=1,
act=paddle.activation.Sigmoid())
if not infer:
label = paddle.layer.data(
name="label", type=paddle.data_type.dense_vector(1))
cost = paddle.layer.multi_binary_label_cross_entropy_cost(
input=predict, label=label)
paddle.evaluator.classification_error(
name="classification_error", input=predict, label=label)
paddle.evaluator.auc(name="auc", input=predict, label=label)
return cost
else:
return predict
"""
Preprocess Criteo dataset. This dataset was used for the Display Advertising
Challenge (https://www.kaggle.com/c/criteo-display-ad-challenge).
"""
import os
import sys
import click
import random
import collections
# There are 13 integer features and 26 categorical features
continous_features = range(1, 14)
categorial_features = range(14, 40)
# Clip integer features. The clip point for each integer feature
# is derived from the 95% quantile of the total values in each feature
continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
class CategoryDictGenerator:
"""
Generate dictionary for each of the categorical features
"""
def __init__(self, num_feature):
self.dicts = []
self.num_feature = num_feature
for i in range(0, num_feature):
self.dicts.append(collections.defaultdict(int))
def build(self, datafile, categorial_features, cutoff=0):
with open(datafile, 'r') as f:
for line in f:
features = line.rstrip('\n').split('\t')
for i in range(0, self.num_feature):
if features[categorial_features[i]] != '':
self.dicts[i][features[categorial_features[i]]] += 1
for i in range(0, self.num_feature):
self.dicts[i] = filter(lambda x: x[1] >= cutoff,
self.dicts[i].items())
self.dicts[i] = sorted(self.dicts[i], key=lambda x: (-x[1], x[0]))
vocabs, _ = list(zip(*self.dicts[i]))
self.dicts[i] = dict(zip(vocabs, range(1, len(vocabs) + 1)))
self.dicts[i]['<unk>'] = 0
def gen(self, idx, key):
if key not in self.dicts[idx]:
res = self.dicts[idx]['<unk>']
else:
res = self.dicts[idx][key]
return res
def dicts_sizes(self):
return map(len, self.dicts)
class ContinuousFeatureGenerator:
"""
Normalize the integer features to [0, 1] by min-max normalization
"""
def __init__(self, num_feature):
self.num_feature = num_feature
self.min = [sys.maxint] * num_feature
self.max = [-sys.maxint] * num_feature
def build(self, datafile, continous_features):
with open(datafile, 'r') as f:
for line in f:
features = line.rstrip('\n').split('\t')
for i in range(0, self.num_feature):
val = features[continous_features[i]]
if val != '':
val = int(val)
if val > continous_clip[i]:
val = continous_clip[i]
self.min[i] = min(self.min[i], val)
self.max[i] = max(self.max[i], val)
def gen(self, idx, val):
if val == '':
return 0.0
val = float(val)
return (val - self.min[idx]) / (self.max[idx] - self.min[idx])
@click.command("preprocess")
@click.option("--datadir", type=str, help="Path to raw criteo dataset")
@click.option("--outdir", type=str, help="Path to save the processed data")
def preprocess(datadir, outdir):
"""
All the 13 integer features are normalzied to continous values and these
continous features are combined into one vecotr with dimension 13.
Each of the 26 categorical features are one-hot encoded and all the one-hot
vectors are combined into one sparse binary vector.
"""
dists = ContinuousFeatureGenerator(len(continous_features))
dists.build(os.path.join(datadir, 'train.txt'), continous_features)
dicts = CategoryDictGenerator(len(categorial_features))
dicts.build(
os.path.join(datadir, 'train.txt'), categorial_features, cutoff=200)
dict_sizes = dicts.dicts_sizes()
categorial_feature_offset = [0]
for i in range(1, len(categorial_features)):
offset = categorial_feature_offset[i - 1] + dict_sizes[i - 1]
categorial_feature_offset.append(offset)
random.seed(0)
# 90% of the data are used for training, and 10% of the data are used
# for validation.
with open(os.path.join(outdir, 'train.txt'), 'w') as out_train:
with open(os.path.join(outdir, 'valid.txt'), 'w') as out_valid:
with open(os.path.join(datadir, 'train.txt'), 'r') as f:
for line in f:
features = line.rstrip('\n').split('\t')
continous_vals = []
for i in range(0, len(continous_features)):
val = dists.gen(i, features[continous_features[i]])
continous_vals.append(
"{0:.6f}".format(val).rstrip('0').rstrip('.'))
categorial_vals = []
for i in range(0, len(categorial_features)):
val = dicts.gen(i, features[categorial_features[
i]]) + categorial_feature_offset[i]
categorial_vals.append(str(val))
continous_vals = ','.join(continous_vals)
categorial_vals = ','.join(categorial_vals)
label = features[0]
if random.randint(0, 9999) % 10 != 0:
out_train.write('\t'.join(
[continous_vals, categorial_vals, label]) + '\n')
else:
out_valid.write('\t'.join(
[continous_vals, categorial_vals, label]) + '\n')
with open(os.path.join(outdir, 'test.txt'), 'w') as out:
with open(os.path.join(datadir, 'test.txt'), 'r') as f:
for line in f:
features = line.rstrip('\n').split('\t')
continous_vals = []
for i in range(0, len(continous_features)):
val = dists.gen(i, features[continous_features[i] - 1])
continous_vals.append(
"{0:.6f}".format(val).rstrip('0').rstrip('.'))
categorial_vals = []
for i in range(0, len(categorial_features)):
val = dicts.gen(i,
features[categorial_features[i] -
1]) + categorial_feature_offset[i]
categorial_vals.append(str(val))
continous_vals = ','.join(continous_vals)
categorial_vals = ','.join(categorial_vals)
out.write('\t'.join([continous_vals, categorial_vals]) + '\n')
if __name__ == "__main__":
preprocess()
class Dataset:
def _reader_creator(self, path, is_infer):
def reader():
with open(path, 'r') as f:
for line in f:
features = line.rstrip('\n').split('\t')
dense_feature = map(float, features[0].split(','))
sparse_feature = map(int, features[1].split(','))
if not is_infer:
label = [float(features[2])]
yield [dense_feature, sparse_feature
] + sparse_feature + [label]
else:
yield [dense_feature, sparse_feature] + sparse_feature
return reader
def train(self, path):
return self._reader_creator(path, False)
def test(self, path):
return self._reader_creator(path, False)
def infer(self, path):
return self._reader_creator(path, True)
feeding = {
'dense_input': 0,
'sparse_input': 1,
'C1': 2,
'C2': 3,
'C3': 4,
'C4': 5,
'C5': 6,
'C6': 7,
'C7': 8,
'C8': 9,
'C9': 10,
'C10': 11,
'C11': 12,
'C12': 13,
'C13': 14,
'C14': 15,
'C15': 16,
'C16': 17,
'C17': 18,
'C18': 19,
'C19': 20,
'C20': 21,
'C21': 22,
'C22': 23,
'C23': 24,
'C24': 25,
'C25': 26,
'C26': 27,
'label': 28
}
import os
import gzip
import logging
import argparse
import paddle.v2 as paddle
from network_conf import DeepFM
import reader
logging.basicConfig()
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example")
parser.add_argument(
'--train_data_path',
type=str,
required=True,
help="The path of training dataset")
parser.add_argument(
'--test_data_path',
type=str,
required=True,
help="The path of testing dataset")
parser.add_argument(
'--batch_size',
type=int,
default=1000,
help="The size of mini-batch (default:1000)")
parser.add_argument(
'--num_passes',
type=int,
default=10,
help="The number of passes to train (default: 10)")
parser.add_argument(
'--factor_size',
type=int,
default=10,
help="The factor size for the factorization machine (default:10)")
parser.add_argument(
'--model_output_dir',
type=str,
default='models',
help='The path for model to store (default: models)')
return parser.parse_args()
def train():
args = parse_args()
if not os.path.isdir(args.model_output_dir):
os.mkdir(args.model_output_dir)
paddle.init(use_gpu=False, trainer_count=1)
optimizer = paddle.optimizer.Adam(learning_rate=1e-4)
model = DeepFM(args.factor_size)
params = paddle.parameters.create(model)
trainer = paddle.trainer.SGD(
cost=model, parameters=params, update_equation=optimizer)
dataset = reader.Dataset()
def __event_handler__(event):
if isinstance(event, paddle.event.EndIteration):
num_samples = event.batch_id * args.batch_size
if event.batch_id % 100 == 0:
logger.warning("Pass %d, Batch %d, Samples %d, Cost %f, %s" %
(event.pass_id, event.batch_id, num_samples,
event.cost, event.metrics))
if event.batch_id % 10000 == 0:
if args.test_data_path:
result = trainer.test(
reader=paddle.batch(
dataset.test(args.test_data_path),
batch_size=args.batch_size),
feeding=reader.feeding)
logger.warning("Test %d-%d, Cost %f, %s" %
(event.pass_id, event.batch_id, result.cost,
result.metrics))
path = "{}/model-pass-{}-batch-{}.tar.gz".format(
args.model_output_dir, event.pass_id, event.batch_id)
with gzip.open(path, 'w') as f:
trainer.save_parameter_to_tar(f)
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
dataset.train(args.train_data_path),
buf_size=args.batch_size * 10000),
batch_size=args.batch_size),
feeding=reader.feeding,
event_handler=__event_handler__,
num_passes=args.num_passes)
if __name__ == '__main__':
train()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册