Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
4191136f
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4191136f
编写于
1月 31, 2019
作者:
B
Bo Zhou
提交者:
GitHub
1月 31, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1573 from zenghsh3/develop
make DQN models compatible with paddle>=1.00
上级
265b722a
5cda7770
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
181 addition
and
202 deletion
+181
-202
fluid/DeepQNetwork/DQN_agent.py
fluid/DeepQNetwork/DQN_agent.py
+55
-56
fluid/DeepQNetwork/DoubleDQN_agent.py
fluid/DeepQNetwork/DoubleDQN_agent.py
+61
-61
fluid/DeepQNetwork/DuelingDQN_agent.py
fluid/DeepQNetwork/DuelingDQN_agent.py
+63
-63
fluid/DeepQNetwork/README.md
fluid/DeepQNetwork/README.md
+1
-1
fluid/DeepQNetwork/README_cn.md
fluid/DeepQNetwork/README_cn.md
+1
-1
fluid/DeepQNetwork/utils.py
fluid/DeepQNetwork/utils.py
+0
-20
未找到文件。
fluid/DeepQNetwork/DQN_agent.py
浏览文件 @
4191136f
#-*- coding: utf-8 -*-
#-*- coding: utf-8 -*-
import
math
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
import
numpy
as
np
import
math
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
utils
import
fluid_flatten
class
DQNModel
(
object
):
class
DQNModel
(
object
):
...
@@ -39,34 +38,51 @@ class DQNModel(object):
...
@@ -39,34 +38,51 @@ class DQNModel(object):
name
=
'isOver'
,
shape
=
[],
dtype
=
'bool'
)
name
=
'isOver'
,
shape
=
[],
dtype
=
'bool'
)
def
_build_net
(
self
):
def
_build_net
(
self
):
s
tate
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
s
elf
.
predict_program
=
fluid
.
Program
()
self
.
pred_value
=
self
.
get_DQN_prediction
(
state
)
self
.
train_program
=
fluid
.
Program
(
)
self
.
predict_program
=
fluid
.
default_main_program
().
clone
()
self
.
_sync_program
=
fluid
.
Program
()
reward
=
fluid
.
layers
.
clip
(
reward
,
min
=-
1.0
,
max
=
1.0
)
with
fluid
.
program_guard
(
self
.
predict_program
):
state
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
self
.
pred_value
=
self
.
get_DQN_prediction
(
state
)
action_onehot
=
fluid
.
layers
.
one_hot
(
action
,
self
.
action_dim
)
with
fluid
.
program_guard
(
self
.
train_program
):
action_onehot
=
fluid
.
layers
.
cast
(
action_onehot
,
dtype
=
'float32'
)
state
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
pred_value
=
self
.
get_DQN_prediction
(
state
)
pred_action_value
=
fluid
.
layers
.
reduce_sum
(
reward
=
fluid
.
layers
.
clip
(
reward
,
min
=-
1.0
,
max
=
1.0
)
fluid
.
layers
.
elementwise_mul
(
action_onehot
,
self
.
pred_value
),
dim
=
1
)
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
action_onehot
=
fluid
.
layers
.
one_hot
(
action
,
self
.
action_dim
)
best_v
=
fluid
.
layers
.
reduce_max
(
targetQ_predict_value
,
dim
=
1
)
action_onehot
=
fluid
.
layers
.
cast
(
action_onehot
,
dtype
=
'float32'
)
best_v
.
stop_gradient
=
True
target
=
reward
+
(
1.0
-
fluid
.
layers
.
cast
(
pred_action_value
=
fluid
.
layers
.
reduce_sum
(
isOver
,
dtype
=
'float32'
))
*
self
.
gamma
*
best_v
fluid
.
layers
.
elementwise_mul
(
action_onehot
,
pred_value
),
dim
=
1
)
cost
=
fluid
.
layers
.
square_error_cost
(
pred_action_value
,
target
)
cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_sync_program
=
self
.
_build_sync_target_network
()
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
best_v
=
fluid
.
layers
.
reduce_max
(
targetQ_predict_value
,
dim
=
1
)
best_v
.
stop_gradient
=
True
optimizer
=
fluid
.
optimizer
.
Adam
(
1e-3
*
0.5
,
epsilon
=
1e-3
)
target
=
reward
+
(
1.0
-
fluid
.
layers
.
cast
(
optimizer
.
minimize
(
cost
)
isOver
,
dtype
=
'float32'
))
*
self
.
gamma
*
best_v
cost
=
fluid
.
layers
.
square_error_cost
(
pred_action_value
,
target
)
cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
# define program
optimizer
=
fluid
.
optimizer
.
Adam
(
1e-3
*
0.5
,
epsilon
=
1e-3
)
self
.
train_program
=
fluid
.
default_main_program
()
optimizer
.
minimize
(
cost
)
vars
=
list
(
self
.
train_program
.
list_vars
())
policy_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'policy'
in
x
.
name
,
vars
))
target_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'target'
in
x
.
name
,
vars
))
policy_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
target_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
with
fluid
.
program_guard
(
self
.
_sync_program
):
sync_ops
=
[]
for
i
,
var
in
enumerate
(
policy_vars
):
sync_op
=
fluid
.
layers
.
assign
(
policy_vars
[
i
],
target_vars
[
i
])
sync_ops
.
append
(
sync_op
)
# fluid exe
# fluid exe
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
...
@@ -81,50 +97,50 @@ class DQNModel(object):
...
@@ -81,50 +97,50 @@ class DQNModel(object):
conv1
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
image
,
input
=
image
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
max_pool1
=
fluid
.
layers
.
pool2d
(
max_pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv1
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv2
=
fluid
.
layers
.
conv2d
(
conv2
=
fluid
.
layers
.
conv2d
(
input
=
max_pool1
,
input
=
max_pool1
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
max_pool2
=
fluid
.
layers
.
pool2d
(
max_pool2
=
fluid
.
layers
.
pool2d
(
input
=
conv2
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv3
=
fluid
.
layers
.
conv2d
(
conv3
=
fluid
.
layers
.
conv2d
(
input
=
max_pool2
,
input
=
max_pool2
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
4
,
4
]
,
filter_size
=
4
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
max_pool3
=
fluid
.
layers
.
pool2d
(
max_pool3
=
fluid
.
layers
.
pool2d
(
input
=
conv3
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv3
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv4
=
fluid
.
layers
.
conv2d
(
conv4
=
fluid
.
layers
.
conv2d
(
input
=
max_pool3
,
input
=
max_pool3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
3
,
3
]
,
filter_size
=
3
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
flatten
=
fluid
_flatten
(
conv4
)
flatten
=
fluid
.
layers
.
flatten
(
conv4
,
axis
=
1
)
out
=
fluid
.
layers
.
fc
(
out
=
fluid
.
layers
.
fc
(
input
=
flatten
,
input
=
flatten
,
...
@@ -133,23 +149,6 @@ class DQNModel(object):
...
@@ -133,23 +149,6 @@ class DQNModel(object):
bias_attr
=
ParamAttr
(
name
=
'{}_fc1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_fc1_b'
.
format
(
variable_field
)))
return
out
return
out
def
_build_sync_target_network
(
self
):
vars
=
list
(
fluid
.
default_main_program
().
list_vars
())
policy_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'policy'
in
x
.
name
,
vars
))
target_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'target'
in
x
.
name
,
vars
))
policy_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
target_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
sync_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
sync_program
):
sync_ops
=
[]
for
i
,
var
in
enumerate
(
policy_vars
):
sync_op
=
fluid
.
layers
.
assign
(
policy_vars
[
i
],
target_vars
[
i
])
sync_ops
.
append
(
sync_op
)
sync_program
=
sync_program
.
prune
(
sync_ops
)
return
sync_program
def
act
(
self
,
state
,
train_or_test
):
def
act
(
self
,
state
,
train_or_test
):
sample
=
np
.
random
.
random
()
sample
=
np
.
random
.
random
()
...
...
fluid/DeepQNetwork/DoubleDQN_agent.py
浏览文件 @
4191136f
#-*- coding: utf-8 -*-
#-*- coding: utf-8 -*-
import
math
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
import
numpy
as
np
from
tqdm
import
tqdm
from
tqdm
import
tqdm
import
math
from
utils
import
fluid_argmax
,
fluid_flatten
class
DoubleDQNModel
(
object
):
class
DoubleDQNModel
(
object
):
...
@@ -39,41 +38,59 @@ class DoubleDQNModel(object):
...
@@ -39,41 +38,59 @@ class DoubleDQNModel(object):
name
=
'isOver'
,
shape
=
[],
dtype
=
'bool'
)
name
=
'isOver'
,
shape
=
[],
dtype
=
'bool'
)
def
_build_net
(
self
):
def
_build_net
(
self
):
s
tate
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
s
elf
.
predict_program
=
fluid
.
Program
()
self
.
pred_value
=
self
.
get_DQN_prediction
(
state
)
self
.
train_program
=
fluid
.
Program
(
)
self
.
predict_program
=
fluid
.
default_main_program
().
clone
()
self
.
_sync_program
=
fluid
.
Program
()
reward
=
fluid
.
layers
.
clip
(
reward
,
min
=-
1.0
,
max
=
1.0
)
with
fluid
.
program_guard
(
self
.
predict_program
):
state
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
self
.
pred_value
=
self
.
get_DQN_prediction
(
state
)
action_onehot
=
fluid
.
layers
.
one_hot
(
action
,
self
.
action_dim
)
with
fluid
.
program_guard
(
self
.
train_program
):
action_onehot
=
fluid
.
layers
.
cast
(
action_onehot
,
dtype
=
'float32'
)
state
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
pred_value
=
self
.
get_DQN_prediction
(
state
)
pred_action_value
=
fluid
.
layers
.
reduce_sum
(
reward
=
fluid
.
layers
.
clip
(
reward
,
min
=-
1.0
,
max
=
1.0
)
fluid
.
layers
.
elementwise_mul
(
action_onehot
,
self
.
pred_value
),
dim
=
1
)
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
action_onehot
=
fluid
.
layers
.
one_hot
(
action
,
self
.
action_dim
)
action_onehot
=
fluid
.
layers
.
cast
(
action_onehot
,
dtype
=
'float32'
)
next_s_predcit_value
=
self
.
get_DQN_prediction
(
next_s
)
pred_action_value
=
fluid
.
layers
.
reduce_sum
(
greedy_action
=
fluid_argmax
(
next_s_predcit_value
)
fluid
.
layers
.
elementwise_mul
(
action_onehot
,
pred_value
),
dim
=
1
)
predict_onehot
=
fluid
.
layers
.
one_hot
(
greedy_action
,
self
.
action_dim
)
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
best_v
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
elementwise_mul
(
predict_onehot
,
targetQ_predict_value
),
dim
=
1
)
best_v
.
stop_gradient
=
True
target
=
reward
+
(
1.0
-
fluid
.
layers
.
cast
(
next_s_predcit_value
=
self
.
get_DQN_prediction
(
next_s
)
isOver
,
dtype
=
'float32'
))
*
self
.
gamma
*
best_v
greedy_action
=
fluid
.
layers
.
argmax
(
next_s_predcit_value
,
axis
=
1
)
cost
=
fluid
.
layers
.
square_error_cost
(
pred_action_value
,
target
)
greedy_action
=
fluid
.
layers
.
unsqueeze
(
greedy_action
,
axes
=
[
1
])
cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_sync_program
=
self
.
_build_sync_target_network
()
predict_onehot
=
fluid
.
layers
.
one_hot
(
greedy_action
,
self
.
action_dim
)
best_v
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
elementwise_mul
(
predict_onehot
,
targetQ_predict_value
),
dim
=
1
)
best_v
.
stop_gradient
=
True
optimizer
=
fluid
.
optimizer
.
Adam
(
1e-3
*
0.5
,
epsilon
=
1e-3
)
target
=
reward
+
(
1.0
-
fluid
.
layers
.
cast
(
optimizer
.
minimize
(
cost
)
isOver
,
dtype
=
'float32'
))
*
self
.
gamma
*
best_v
cost
=
fluid
.
layers
.
square_error_cost
(
pred_action_value
,
target
)
cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
# define program
optimizer
=
fluid
.
optimizer
.
Adam
(
1e-3
*
0.5
,
epsilon
=
1e-3
)
self
.
train_program
=
fluid
.
default_main_program
()
optimizer
.
minimize
(
cost
)
vars
=
list
(
self
.
train_program
.
list_vars
())
policy_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'policy'
in
x
.
name
,
vars
))
target_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'target'
in
x
.
name
,
vars
))
policy_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
target_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
with
fluid
.
program_guard
(
self
.
_sync_program
):
sync_ops
=
[]
for
i
,
var
in
enumerate
(
policy_vars
):
sync_op
=
fluid
.
layers
.
assign
(
policy_vars
[
i
],
target_vars
[
i
])
sync_ops
.
append
(
sync_op
)
# fluid exe
# fluid exe
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
...
@@ -88,50 +105,50 @@ class DoubleDQNModel(object):
...
@@ -88,50 +105,50 @@ class DoubleDQNModel(object):
conv1
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
image
,
input
=
image
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
max_pool1
=
fluid
.
layers
.
pool2d
(
max_pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv1
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv2
=
fluid
.
layers
.
conv2d
(
conv2
=
fluid
.
layers
.
conv2d
(
input
=
max_pool1
,
input
=
max_pool1
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
max_pool2
=
fluid
.
layers
.
pool2d
(
max_pool2
=
fluid
.
layers
.
pool2d
(
input
=
conv2
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv3
=
fluid
.
layers
.
conv2d
(
conv3
=
fluid
.
layers
.
conv2d
(
input
=
max_pool2
,
input
=
max_pool2
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
4
,
4
]
,
filter_size
=
4
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
max_pool3
=
fluid
.
layers
.
pool2d
(
max_pool3
=
fluid
.
layers
.
pool2d
(
input
=
conv3
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv3
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv4
=
fluid
.
layers
.
conv2d
(
conv4
=
fluid
.
layers
.
conv2d
(
input
=
max_pool3
,
input
=
max_pool3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
3
,
3
]
,
filter_size
=
3
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
flatten
=
fluid
_flatten
(
conv4
)
flatten
=
fluid
.
layers
.
flatten
(
conv4
,
axis
=
1
)
out
=
fluid
.
layers
.
fc
(
out
=
fluid
.
layers
.
fc
(
input
=
flatten
,
input
=
flatten
,
...
@@ -140,23 +157,6 @@ class DoubleDQNModel(object):
...
@@ -140,23 +157,6 @@ class DoubleDQNModel(object):
bias_attr
=
ParamAttr
(
name
=
'{}_fc1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_fc1_b'
.
format
(
variable_field
)))
return
out
return
out
def
_build_sync_target_network
(
self
):
vars
=
list
(
fluid
.
default_main_program
().
list_vars
())
policy_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'policy'
in
x
.
name
,
vars
))
target_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'target'
in
x
.
name
,
vars
))
policy_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
target_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
sync_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
sync_program
):
sync_ops
=
[]
for
i
,
var
in
enumerate
(
policy_vars
):
sync_op
=
fluid
.
layers
.
assign
(
policy_vars
[
i
],
target_vars
[
i
])
sync_ops
.
append
(
sync_op
)
sync_program
=
sync_program
.
prune
(
sync_ops
)
return
sync_program
def
act
(
self
,
state
,
train_or_test
):
def
act
(
self
,
state
,
train_or_test
):
sample
=
np
.
random
.
random
()
sample
=
np
.
random
.
random
()
...
...
fluid/DeepQNetwork/DuelingDQN_agent.py
浏览文件 @
4191136f
#-*- coding: utf-8 -*-
#-*- coding: utf-8 -*-
import
math
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
import
numpy
as
np
from
tqdm
import
tqdm
from
tqdm
import
tqdm
import
math
from
utils
import
fluid_flatten
class
DuelingDQNModel
(
object
):
class
DuelingDQNModel
(
object
):
...
@@ -39,34 +38,51 @@ class DuelingDQNModel(object):
...
@@ -39,34 +38,51 @@ class DuelingDQNModel(object):
name
=
'isOver'
,
shape
=
[],
dtype
=
'bool'
)
name
=
'isOver'
,
shape
=
[],
dtype
=
'bool'
)
def
_build_net
(
self
):
def
_build_net
(
self
):
s
tate
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
s
elf
.
predict_program
=
fluid
.
Program
()
self
.
pred_value
=
self
.
get_DQN_prediction
(
state
)
self
.
train_program
=
fluid
.
Program
(
)
self
.
predict_program
=
fluid
.
default_main_program
().
clone
()
self
.
_sync_program
=
fluid
.
Program
()
reward
=
fluid
.
layers
.
clip
(
reward
,
min
=-
1.0
,
max
=
1.0
)
with
fluid
.
program_guard
(
self
.
predict_program
):
state
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
self
.
pred_value
=
self
.
get_DQN_prediction
(
state
)
action_onehot
=
fluid
.
layers
.
one_hot
(
action
,
self
.
action_dim
)
with
fluid
.
program_guard
(
self
.
train_program
):
action_onehot
=
fluid
.
layers
.
cast
(
action_onehot
,
dtype
=
'float32'
)
state
,
action
,
reward
,
next_s
,
isOver
=
self
.
_get_inputs
()
pred_value
=
self
.
get_DQN_prediction
(
state
)
pred_action_value
=
fluid
.
layers
.
reduce_sum
(
reward
=
fluid
.
layers
.
clip
(
reward
,
min
=-
1.0
,
max
=
1.0
)
fluid
.
layers
.
elementwise_mul
(
action_onehot
,
self
.
pred_value
),
dim
=
1
)
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
action_onehot
=
fluid
.
layers
.
one_hot
(
action
,
self
.
action_dim
)
best_v
=
fluid
.
layers
.
reduce_max
(
targetQ_predict_value
,
dim
=
1
)
action_onehot
=
fluid
.
layers
.
cast
(
action_onehot
,
dtype
=
'float32'
)
best_v
.
stop_gradient
=
True
target
=
reward
+
(
1.0
-
fluid
.
layers
.
cast
(
pred_action_value
=
fluid
.
layers
.
reduce_sum
(
isOver
,
dtype
=
'float32'
))
*
self
.
gamma
*
best_v
fluid
.
layers
.
elementwise_mul
(
action_onehot
,
pred_value
),
dim
=
1
)
cost
=
fluid
.
layers
.
square_error_cost
(
pred_action_value
,
target
)
cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_sync_program
=
self
.
_build_sync_target_network
()
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
best_v
=
fluid
.
layers
.
reduce_max
(
targetQ_predict_value
,
dim
=
1
)
best_v
.
stop_gradient
=
True
optimizer
=
fluid
.
optimizer
.
Adam
(
1e-3
*
0.5
,
epsilon
=
1e-3
)
target
=
reward
+
(
1.0
-
fluid
.
layers
.
cast
(
optimizer
.
minimize
(
cost
)
isOver
,
dtype
=
'float32'
))
*
self
.
gamma
*
best_v
cost
=
fluid
.
layers
.
square_error_cost
(
pred_action_value
,
target
)
cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
# define program
optimizer
=
fluid
.
optimizer
.
Adam
(
1e-3
*
0.5
,
epsilon
=
1e-3
)
self
.
train_program
=
fluid
.
default_main_program
()
optimizer
.
minimize
(
cost
)
vars
=
list
(
self
.
train_program
.
list_vars
())
policy_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'policy'
in
x
.
name
,
vars
))
target_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'target'
in
x
.
name
,
vars
))
policy_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
target_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
with
fluid
.
program_guard
(
self
.
_sync_program
):
sync_ops
=
[]
for
i
,
var
in
enumerate
(
policy_vars
):
sync_op
=
fluid
.
layers
.
assign
(
policy_vars
[
i
],
target_vars
[
i
])
sync_ops
.
append
(
sync_op
)
# fluid exe
# fluid exe
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
...
@@ -81,50 +97,50 @@ class DuelingDQNModel(object):
...
@@ -81,50 +97,50 @@ class DuelingDQNModel(object):
conv1
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
image
,
input
=
image
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
max_pool1
=
fluid
.
layers
.
pool2d
(
max_pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv1
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv2
=
fluid
.
layers
.
conv2d
(
conv2
=
fluid
.
layers
.
conv2d
(
input
=
max_pool1
,
input
=
max_pool1
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
max_pool2
=
fluid
.
layers
.
pool2d
(
max_pool2
=
fluid
.
layers
.
pool2d
(
input
=
conv2
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv3
=
fluid
.
layers
.
conv2d
(
conv3
=
fluid
.
layers
.
conv2d
(
input
=
max_pool2
,
input
=
max_pool2
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
4
,
4
]
,
filter_size
=
4
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
max_pool3
=
fluid
.
layers
.
pool2d
(
max_pool3
=
fluid
.
layers
.
pool2d
(
input
=
conv3
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv3
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv4
=
fluid
.
layers
.
conv2d
(
conv4
=
fluid
.
layers
.
conv2d
(
input
=
max_pool3
,
input
=
max_pool3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
3
,
3
]
,
filter_size
=
3
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
flatten
=
fluid
_flatten
(
conv4
)
flatten
=
fluid
.
layers
.
flatten
(
conv4
,
axis
=
1
)
value
=
fluid
.
layers
.
fc
(
value
=
fluid
.
layers
.
fc
(
input
=
flatten
,
input
=
flatten
,
...
@@ -143,24 +159,6 @@ class DuelingDQNModel(object):
...
@@ -143,24 +159,6 @@ class DuelingDQNModel(object):
advantage
,
dim
=
1
,
keep_dim
=
True
))
advantage
,
dim
=
1
,
keep_dim
=
True
))
return
Q
return
Q
def
_build_sync_target_network
(
self
):
vars
=
list
(
fluid
.
default_main_program
().
list_vars
())
policy_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'policy'
in
x
.
name
,
vars
))
target_vars
=
list
(
filter
(
lambda
x
:
'GRAD'
not
in
x
.
name
and
'target'
in
x
.
name
,
vars
))
policy_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
target_vars
.
sort
(
key
=
lambda
x
:
x
.
name
)
sync_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
sync_program
):
sync_ops
=
[]
for
i
,
var
in
enumerate
(
policy_vars
):
sync_op
=
fluid
.
layers
.
assign
(
policy_vars
[
i
],
target_vars
[
i
])
sync_ops
.
append
(
sync_op
)
# The prune API is deprecated, please don't use it any more.
sync_program
=
sync_program
.
_prune
(
sync_ops
)
return
sync_program
def
act
(
self
,
state
,
train_or_test
):
def
act
(
self
,
state
,
train_or_test
):
sample
=
np
.
random
.
random
()
sample
=
np
.
random
.
random
()
...
@@ -186,12 +184,14 @@ class DuelingDQNModel(object):
...
@@ -186,12 +184,14 @@ class DuelingDQNModel(object):
self
.
global_step
+=
1
self
.
global_step
+=
1
action
=
np
.
expand_dims
(
action
,
-
1
)
action
=
np
.
expand_dims
(
action
,
-
1
)
self
.
exe
.
run
(
self
.
train_program
,
\
self
.
exe
.
run
(
self
.
train_program
,
feed
=
{
'state'
:
state
.
astype
(
'float32'
),
\
feed
=
{
'action'
:
action
.
astype
(
'int32'
),
\
'state'
:
state
.
astype
(
'float32'
),
'reward'
:
reward
,
\
'action'
:
action
.
astype
(
'int32'
),
'next_s'
:
next_state
.
astype
(
'float32'
),
\
'reward'
:
reward
,
'isOver'
:
isOver
})
'next_s'
:
next_state
.
astype
(
'float32'
),
'isOver'
:
isOver
})
def
sync_target_network
(
self
):
def
sync_target_network
(
self
):
self
.
exe
.
run
(
self
.
_sync_program
)
self
.
exe
.
run
(
self
.
_sync_program
)
fluid/DeepQNetwork/README.md
浏览文件 @
4191136f
...
@@ -29,7 +29,7 @@ The average game rewards that can be obtained for the three models as the number
...
@@ -29,7 +29,7 @@ The average game rewards that can be obtained for the three models as the number
+
gym
+
gym
+
tqdm
+
tqdm
+
opencv-python
+
opencv-python
+
paddlepaddle-gpu>=
0.12
.0
+
paddlepaddle-gpu>=
1.0
.0
+
ale_python_interface
+
ale_python_interface
### Install Dependencies:
### Install Dependencies:
...
...
fluid/DeepQNetwork/README_cn.md
浏览文件 @
4191136f
...
@@ -28,7 +28,7 @@
...
@@ -28,7 +28,7 @@
+
gym
+
gym
+
tqdm
+
tqdm
+
opencv-python
+
opencv-python
+
paddlepaddle-gpu>=
0.12
.0
+
paddlepaddle-gpu>=
1.0
.0
+
ale_python_interface
+
ale_python_interface
### 下载依赖:
### 下载依赖:
...
...
fluid/DeepQNetwork/utils.py
已删除
100644 → 0
浏览文件 @
265b722a
#-*- coding: utf-8 -*-
#File: utils.py
import
paddle.fluid
as
fluid
import
numpy
as
np
def
fluid_argmax
(
x
):
"""
Get index of max value for the last dimension
"""
_
,
max_index
=
fluid
.
layers
.
topk
(
x
,
k
=
1
)
return
max_index
def
fluid_flatten
(
x
):
"""
Flatten fluid variable along the first dimension
"""
return
fluid
.
layers
.
reshape
(
x
,
shape
=
[
-
1
,
np
.
prod
(
x
.
shape
[
1
:])])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录