Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
5cda7770
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5cda7770
编写于
12月 28, 2018
作者:
Z
zenghsh3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use argmax flatten of fluid
上级
2409c61c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
50 addition
and
72 deletion
+50
-72
fluid/DeepQNetwork/DQN_agent.py
fluid/DeepQNetwork/DQN_agent.py
+16
-17
fluid/DeepQNetwork/DoubleDQN_agent.py
fluid/DeepQNetwork/DoubleDQN_agent.py
+18
-18
fluid/DeepQNetwork/DuelingDQN_agent.py
fluid/DeepQNetwork/DuelingDQN_agent.py
+16
-17
fluid/DeepQNetwork/utils.py
fluid/DeepQNetwork/utils.py
+0
-20
未找到文件。
fluid/DeepQNetwork/DQN_agent.py
浏览文件 @
5cda7770
...
@@ -5,7 +5,6 @@ import numpy as np
...
@@ -5,7 +5,6 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
utils
import
fluid_flatten
class
DQNModel
(
object
):
class
DQNModel
(
object
):
...
@@ -98,50 +97,50 @@ class DQNModel(object):
...
@@ -98,50 +97,50 @@ class DQNModel(object):
conv1
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
image
,
input
=
image
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
max_pool1
=
fluid
.
layers
.
pool2d
(
max_pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv1
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv2
=
fluid
.
layers
.
conv2d
(
conv2
=
fluid
.
layers
.
conv2d
(
input
=
max_pool1
,
input
=
max_pool1
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
max_pool2
=
fluid
.
layers
.
pool2d
(
max_pool2
=
fluid
.
layers
.
pool2d
(
input
=
conv2
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv3
=
fluid
.
layers
.
conv2d
(
conv3
=
fluid
.
layers
.
conv2d
(
input
=
max_pool2
,
input
=
max_pool2
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
4
,
4
]
,
filter_size
=
4
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
max_pool3
=
fluid
.
layers
.
pool2d
(
max_pool3
=
fluid
.
layers
.
pool2d
(
input
=
conv3
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv3
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv4
=
fluid
.
layers
.
conv2d
(
conv4
=
fluid
.
layers
.
conv2d
(
input
=
max_pool3
,
input
=
max_pool3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
3
,
3
]
,
filter_size
=
3
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
flatten
=
fluid
_flatten
(
conv4
)
flatten
=
fluid
.
layers
.
flatten
(
conv4
,
axis
=
1
)
out
=
fluid
.
layers
.
fc
(
out
=
fluid
.
layers
.
fc
(
input
=
flatten
,
input
=
flatten
,
...
...
fluid/DeepQNetwork/DoubleDQN_agent.py
浏览文件 @
5cda7770
...
@@ -5,7 +5,6 @@ import numpy as np
...
@@ -5,7 +5,6 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
utils
import
fluid_flatten
,
fluid_argmax
class
DoubleDQNModel
(
object
):
class
DoubleDQNModel
(
object
):
...
@@ -62,7 +61,8 @@ class DoubleDQNModel(object):
...
@@ -62,7 +61,8 @@ class DoubleDQNModel(object):
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
targetQ_predict_value
=
self
.
get_DQN_prediction
(
next_s
,
target
=
True
)
next_s_predcit_value
=
self
.
get_DQN_prediction
(
next_s
)
next_s_predcit_value
=
self
.
get_DQN_prediction
(
next_s
)
greedy_action
=
fluid_argmax
(
next_s_predcit_value
)
greedy_action
=
fluid
.
layers
.
argmax
(
next_s_predcit_value
,
axis
=
1
)
greedy_action
=
fluid
.
layers
.
unsqueeze
(
greedy_action
,
axes
=
[
1
])
predict_onehot
=
fluid
.
layers
.
one_hot
(
greedy_action
,
self
.
action_dim
)
predict_onehot
=
fluid
.
layers
.
one_hot
(
greedy_action
,
self
.
action_dim
)
best_v
=
fluid
.
layers
.
reduce_sum
(
best_v
=
fluid
.
layers
.
reduce_sum
(
...
@@ -105,50 +105,50 @@ class DoubleDQNModel(object):
...
@@ -105,50 +105,50 @@ class DoubleDQNModel(object):
conv1
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
image
,
input
=
image
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
max_pool1
=
fluid
.
layers
.
pool2d
(
max_pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv1
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv2
=
fluid
.
layers
.
conv2d
(
conv2
=
fluid
.
layers
.
conv2d
(
input
=
max_pool1
,
input
=
max_pool1
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
max_pool2
=
fluid
.
layers
.
pool2d
(
max_pool2
=
fluid
.
layers
.
pool2d
(
input
=
conv2
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv3
=
fluid
.
layers
.
conv2d
(
conv3
=
fluid
.
layers
.
conv2d
(
input
=
max_pool2
,
input
=
max_pool2
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
4
,
4
]
,
filter_size
=
4
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
max_pool3
=
fluid
.
layers
.
pool2d
(
max_pool3
=
fluid
.
layers
.
pool2d
(
input
=
conv3
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv3
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv4
=
fluid
.
layers
.
conv2d
(
conv4
=
fluid
.
layers
.
conv2d
(
input
=
max_pool3
,
input
=
max_pool3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
3
,
3
]
,
filter_size
=
3
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
flatten
=
fluid
_flatten
(
conv4
)
flatten
=
fluid
.
layers
.
flatten
(
conv4
,
axis
=
1
)
out
=
fluid
.
layers
.
fc
(
out
=
fluid
.
layers
.
fc
(
input
=
flatten
,
input
=
flatten
,
...
...
fluid/DeepQNetwork/DuelingDQN_agent.py
浏览文件 @
5cda7770
...
@@ -5,7 +5,6 @@ import numpy as np
...
@@ -5,7 +5,6 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
utils
import
fluid_flatten
class
DuelingDQNModel
(
object
):
class
DuelingDQNModel
(
object
):
...
@@ -98,50 +97,50 @@ class DuelingDQNModel(object):
...
@@ -98,50 +97,50 @@ class DuelingDQNModel(object):
conv1
=
fluid
.
layers
.
conv2d
(
conv1
=
fluid
.
layers
.
conv2d
(
input
=
image
,
input
=
image
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv1'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv1_b'
.
format
(
variable_field
)))
max_pool1
=
fluid
.
layers
.
pool2d
(
max_pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv1
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv2
=
fluid
.
layers
.
conv2d
(
conv2
=
fluid
.
layers
.
conv2d
(
input
=
max_pool1
,
input
=
max_pool1
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
[
5
,
5
]
,
filter_size
=
5
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
2
,
2
]
,
padding
=
2
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv2'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv2_b'
.
format
(
variable_field
)))
max_pool2
=
fluid
.
layers
.
pool2d
(
max_pool2
=
fluid
.
layers
.
pool2d
(
input
=
conv2
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv3
=
fluid
.
layers
.
conv2d
(
conv3
=
fluid
.
layers
.
conv2d
(
input
=
max_pool2
,
input
=
max_pool2
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
4
,
4
]
,
filter_size
=
4
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv3'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv3_b'
.
format
(
variable_field
)))
max_pool3
=
fluid
.
layers
.
pool2d
(
max_pool3
=
fluid
.
layers
.
pool2d
(
input
=
conv3
,
pool_size
=
[
2
,
2
],
pool_stride
=
[
2
,
2
]
,
pool_type
=
'max'
)
input
=
conv3
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
)
conv4
=
fluid
.
layers
.
conv2d
(
conv4
=
fluid
.
layers
.
conv2d
(
input
=
max_pool3
,
input
=
max_pool3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
[
3
,
3
]
,
filter_size
=
3
,
stride
=
[
1
,
1
]
,
stride
=
1
,
padding
=
[
1
,
1
]
,
padding
=
1
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
param_attr
=
ParamAttr
(
name
=
'{}_conv4'
.
format
(
variable_field
)),
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
bias_attr
=
ParamAttr
(
name
=
'{}_conv4_b'
.
format
(
variable_field
)))
flatten
=
fluid
_flatten
(
conv4
)
flatten
=
fluid
.
layers
.
flatten
(
conv4
,
axis
=
1
)
value
=
fluid
.
layers
.
fc
(
value
=
fluid
.
layers
.
fc
(
input
=
flatten
,
input
=
flatten
,
...
...
fluid/DeepQNetwork/utils.py
已删除
100644 → 0
浏览文件 @
2409c61c
#-*- coding: utf-8 -*-
#File: utils.py
import
paddle.fluid
as
fluid
import
numpy
as
np
def
fluid_argmax
(
x
):
"""
Get index of max value for the last dimension
"""
_
,
max_index
=
fluid
.
layers
.
topk
(
x
,
k
=
1
)
return
max_index
def
fluid_flatten
(
x
):
"""
Flatten fluid variable along the first dimension
"""
return
fluid
.
layers
.
reshape
(
x
,
shape
=
[
-
1
,
np
.
prod
(
x
.
shape
[
1
:])])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录