未验证 提交 40f7f1f9 编写于 作者: K Kaipeng Deng 提交者: GitHub

fix yolov3 readme (#3213)

上级 680f68ef
...@@ -220,7 +220,7 @@ YOLOv3检测原理 ...@@ -220,7 +220,7 @@ YOLOv3检测原理
### 模型结构 ### 模型结构
YOLOv3将输入图像分成S\*S个格子,每个格子预测B个bounding box,每个bounding box预测内容包括: Location(x, y, w, h)、Confidence Score和C个类别的概率,因此YOLOv3输出层的channel数为S\*S\*B\*(5 + C)。YOLOv3的loss函数也有三部分组成:Location误差,Confidence误差和分类误差。 YOLOv3将输入图像分成S\*S个格子,每个格子预测B个bounding box,每个bounding box预测内容包括: Location(x, y, w, h)、Confidence Score和C个类别的概率,因此YOLOv3输出层的channel数为B\*(5 + C)。YOLOv3的loss函数也有三部分组成:Location误差,Confidence误差和分类误差。
YOLOv3的网络结构如下图所示: YOLOv3的网络结构如下图所示:
<p align="center"> <p align="center">
......
...@@ -221,7 +221,7 @@ YOLOv3 detection principle ...@@ -221,7 +221,7 @@ YOLOv3 detection principle
### Model structure ### Model structure
YOLOv3 divides the input image in to S\*S grids and predict B bounding boxes in each grid, predictions of boxes include Location(x, y, w, h), Confidence Score and probabilities of C classes, therefore YOLOv3 output layer has S\*S\*B\*(5 + C) channels. YOLOv3 loss consists of three parts: location loss, confidence loss and classification loss. YOLOv3 divides the input image in to S\*S grids and predict B bounding boxes in each grid, predictions of boxes include Location(x, y, w, h), Confidence Score and probabilities of C classes, therefore YOLOv3 output layer has B\*(5 + C) channels. YOLOv3 loss consists of three parts: location loss, confidence loss and classification loss.
The bone network of YOLOv3 is darknet53, the structure of YOLOv3 is as follow: The bone network of YOLOv3 is darknet53, the structure of YOLOv3 is as follow:
<p align="center"> <p align="center">
<img src="image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br />
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册