Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
339c4cdd
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
339c4cdd
编写于
4月 13, 2018
作者:
G
gmcather
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix code style
上级
519d726b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
567 addition
and
161 deletion
+567
-161
fluid/text_classification/infer.py
fluid/text_classification/infer.py
+8
-15
fluid/text_classification/model.py
fluid/text_classification/model.py
+436
-0
fluid/text_classification/nets.py
fluid/text_classification/nets.py
+50
-78
fluid/text_classification/train.py
fluid/text_classification/train.py
+59
-47
fluid/text_classification/utils.py
fluid/text_classification/utils.py
+14
-21
未找到文件。
fluid/text_classification/infer.py
浏览文件 @
339c4cdd
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
...
...
@@ -11,9 +8,7 @@ import contextlib
import
utils
def
infer
(
test_reader
,
use_cuda
,
model_path
=
None
):
def
infer
(
test_reader
,
use_cuda
,
model_path
=
None
):
"""
inference function
"""
...
...
@@ -27,30 +22,28 @@ def infer(test_reader,
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
total_acc
=
0.0
total_count
=
0
for
data
in
test_reader
():
acc
=
exe
.
run
(
inference_program
,
feed
=
utils
.
data2tensor
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
feed
=
utils
.
data2tensor
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
total_acc
+=
acc
[
0
]
*
len
(
data
)
total_count
+=
len
(
data
)
avg_acc
=
total_acc
/
total_count
print
(
"model_path: %s, avg_acc: %f"
%
(
model_path
,
avg_acc
))
if
__name__
==
"__main__"
:
word_dict
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
)
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
)
model_path
=
sys
.
argv
[
1
]
for
i
in
range
(
30
):
epoch_path
=
model_path
+
"/"
+
"epoch"
+
str
(
i
)
infer
(
test_reader
,
use_cuda
=
False
,
model_path
=
epoch_path
)
infer
(
test_reader
,
use_cuda
=
False
,
model_path
=
epoch_path
)
fluid/text_classification/model.py
0 → 100644
浏览文件 @
339c4cdd
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
import
sys
import
time
import
unittest
import
contextlib
import
utils
def
bow_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
bow net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bow_tanh
=
fluid
.
layers
.
tanh
(
bow
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
conv_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
win_size
=
3
):
"""
conv net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
lstm net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
gru_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
gru net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max_tanh
=
fluid
.
layers
.
tanh
(
gru_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
train
(
train_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
"""
train network
"""
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
if
not
parallel
:
cost
,
acc
,
prediction
=
network
(
data
,
label
,
len
(
word_dict
))
else
:
places
=
fluid
.
layers
.
get_places
(
device_count
=
2
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
cost
,
acc
,
prediction
=
network
(
pd
.
read_input
(
data
),
pd
.
read_input
(
label
),
len
(
word_dict
))
pd
.
write_output
(
cost
)
pd
.
write_output
(
acc
)
cost
,
acc
=
pd
()
cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
mean
(
acc
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
lr
)
sgd_optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
xrange
(
pass_num
):
avg_cost_list
,
avg_acc_list
=
[],
[]
for
data
in
train_reader
():
avg_cost_np
,
avg_acc_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
avg_cost_list
.
append
(
avg_cost_np
)
avg_acc_list
.
append
(
avg_acc_np
)
print
(
"pass_id: %d, avg_acc: %f"
%
(
pass_id
,
np
.
mean
(
avg_acc_list
)))
# save_model
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"words"
,
"label"
],
acc
,
exe
)
def
test
(
test_reader
,
use_cuda
,
save_dirname
=
None
):
"""
test function
"""
if
save_dirname
is
None
:
print
(
str
(
save_dirname
)
+
" cannot be found"
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
total_acc
=
0.0
total_count
=
0
for
data
in
test_reader
():
acc
=
exe
.
run
(
inference_program
,
feed
=
utils
.
data2tensor
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
total_acc
+=
acc
[
0
]
*
len
(
data
)
total_count
+=
len
(
data
)
print
(
"test_acc: %f"
%
(
total_acc
/
total_count
))
def
main
(
network
,
dataset
,
model_conf
,
use_cuda
,
parallel
,
batch_size
,
lr
=
0.2
,
pass_num
=
30
):
"""
main function
"""
word_dict
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
dataset
,
self_dict
=
False
,
batch_size
=
batch_size
,
buf_size
=
50000
)
train
(
train_reader
,
word_dict
,
network
,
use_cuda
=
use_cuda
,
parallel
=
parallel
,
save_dirname
=
model_conf
,
lr
=
lr
,
pass_num
=
pass_num
,
batch_size
=
batch_size
)
test
(
test_reader
,
use_cuda
=
use_cuda
,
save_dirname
=
model_conf
)
class
TestModel
(
unittest
.
TestCase
):
"""
Test Case Module
"""
@
contextlib
.
contextmanager
def
new_program_scope
(
self
):
"""
setting external env
"""
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
@
unittest
.
skip
(
reason
=
'success, total time:14.19s'
)
def
test_bow_cpu
(
self
):
"""
Test bow cpu single thread
"""
with
self
.
new_program_scope
():
main
(
bow_net
,
"tiny_imdb"
,
"bow.cpu"
,
False
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:7.62s'
)
def
test_bow_gpu
(
self
):
"""
Test bow gpu single thread
"""
with
self
.
new_program_scope
():
main
(
bow_net
,
"tiny_imdb"
,
"bow.gpu"
,
True
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:15.02s'
)
def
test_bow_cpu_mthread
(
self
):
"""
Test bow cpu mthread
"""
with
self
.
new_program_scope
():
main
(
bow_net
,
"tiny_imdb"
,
"bow.cpu_mthread"
,
False
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:9.45s'
)
def
test_bow_gpu_mthread
(
self
):
"""
Test bow gpu mthread
"""
with
self
.
new_program_scope
():
main
(
bow_net
,
"tiny_imdb"
,
"bow.gpu_mthread"
,
True
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:85.0s'
)
def
test_cnn_cpu
(
self
):
"""
Test cnn cpu single thread
"""
with
self
.
new_program_scope
():
main
(
conv_net
,
"tiny_imdb"
,
"conv.cpu"
,
False
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:12.0s'
)
def
test_cnn_gpu
(
self
):
"""
Test cnn gpu single thread
"""
with
self
.
new_program_scope
():
main
(
conv_net
,
"tiny_imdb"
,
"conv.gpu"
,
True
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:53.0s'
)
def
test_cnn_cpu_mthread
(
self
):
"""
Test cnn cpu mthread
"""
with
self
.
new_program_scope
():
main
(
conv_net
,
"tiny_imdb"
,
"conv.cpu_mthread"
,
False
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:10.9s'
)
def
test_cnn_gpu_mthread
(
self
):
"""
Test cnn gpu mthread
"""
with
self
.
new_program_scope
():
main
(
conv_net
,
"tiny_imdb"
,
"conv.gpu_mthread"
,
True
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:232.5s'
)
def
test_lstm_cpu
(
self
):
"""
Test lstm cpu single thread
"""
with
self
.
new_program_scope
():
main
(
lstm_net
,
"tiny_imdb"
,
"lstm.cpu"
,
False
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:26.5s'
)
def
test_lstm_gpu
(
self
):
"""
Test lstm gpu single thread
"""
with
self
.
new_program_scope
():
main
(
lstm_net
,
"tiny_imdb"
,
"lstm.gpu"
,
True
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:135.0s'
)
def
test_lstm_cpu_mthread
(
self
):
"""
Test lstm cpu mthread
"""
with
self
.
new_program_scope
():
main
(
lstm_net
,
"tiny_imdb"
,
"lstm.cpu_mthread"
,
False
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:26.23s'
)
def
test_lstm_gpu_mthread
(
self
):
"""
Test lstm gpu mthread
"""
with
self
.
new_program_scope
():
main
(
lstm_net
,
"tiny_imdb"
,
"lstm.gpu_mthread"
,
True
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:163.0s'
)
def
test_gru_cpu
(
self
):
"""
Test gru cpu single thread
"""
with
self
.
new_program_scope
():
main
(
gru_net
,
"tiny_imdb"
,
"gru.cpu"
,
False
,
False
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:28.88s'
)
def
test_gru_gpu
(
self
):
"""
Test gru gpu single thread
"""
with
self
.
new_program_scope
():
main
(
gru_net
,
"tiny_imdb"
,
"gru.gpu"
,
True
,
False
,
128
,
0.02
,
30
)
@
unittest
.
skip
(
reason
=
'success, total time:97.15s'
)
def
test_gru_cpu_mthread
(
self
):
"""
Test gru cpu mthread
"""
with
self
.
new_program_scope
():
main
(
gru_net
,
"tiny_imdb"
,
"gru.cpu_mthread"
,
False
,
True
,
128
)
@
unittest
.
skip
(
reason
=
'success, total time:26.05s'
)
def
test_gru_gpu_mthread
(
self
):
"""
Test gru gpu mthread
"""
with
self
.
new_program_scope
():
main
(
gru_net
,
"tiny_imdb"
,
"gru.gpu_mthread"
,
True
,
True
,
128
)
if
__name__
==
"__main__"
:
unittest
.
main
()
fluid/text_classification/nets.py
浏览文件 @
339c4cdd
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
...
...
@@ -8,7 +5,8 @@ import sys
import
time
def
bow_net
(
data
,
label
,
def
bow_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -17,27 +15,21 @@ def bow_net(data, label,
"""
bow net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bow_tanh
=
fluid
.
layers
.
tanh
(
bow
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
cnn_net
(
data
,
label
,
def
cnn_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -47,70 +39,61 @@ def cnn_net(data, label,
"""
conv net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
"""
lstm net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
gru_net
(
data
,
label
,
def
gru_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -120,32 +103,21 @@ def gru_net(data, label,
"""
gru net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max_tanh
=
fluid
.
layers
.
tanh
(
gru_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
fluid/text_classification/train.py
浏览文件 @
339c4cdd
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
...
...
@@ -15,39 +12,30 @@ from nets import lstm_net
from
nets
import
gru_net
def
train
(
train_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
"""
train network
"""
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
if
not
parallel
:
cost
,
acc
,
prediction
=
network
(
data
,
label
,
len
(
word_dict
))
cost
,
acc
,
prediction
=
network
(
data
,
label
,
len
(
word_dict
))
else
:
places
=
fluid
.
layers
.
get_places
(
device_count
=
2
)
places
=
fluid
.
layers
.
get_places
(
device_count
=
2
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
cost
,
acc
,
prediction
=
network
(
pd
.
read_input
(
data
),
pd
.
read_input
(
label
),
len
(
word_dict
))
pd
.
read_input
(
data
),
pd
.
read_input
(
label
),
len
(
word_dict
))
pd
.
write_output
(
cost
)
pd
.
write_output
(
acc
)
...
...
@@ -68,8 +56,7 @@ def train(train_reader,
data_size
,
data_count
,
total_acc
,
total_cost
=
0
,
0
,
0.0
,
0.0
for
data
in
train_reader
():
avg_cost_np
,
avg_acc_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
data_size
=
len
(
data
)
total_acc
+=
data_size
*
avg_acc_np
total_cost
+=
data_size
*
avg_cost_np
...
...
@@ -77,36 +64,61 @@ def train(train_reader,
avg_cost
=
total_cost
/
data_count
avg_acc
=
total_acc
/
data_count
print
(
"pass_id: %d, avg_acc: %f, avg_cost: %f"
%
(
pass_id
,
avg_acc
,
avg_cost
))
print
(
"pass_id: %d, avg_acc: %f, avg_cost: %f"
%
(
pass_id
,
avg_acc
,
avg_cost
))
epoch_model
=
save_dirname
+
"/"
+
"epoch"
+
str
(
pass_id
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"words"
,
"label"
],
acc
,
exe
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"words"
,
"label"
],
acc
,
exe
)
def
train_net
():
word_dict
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
)
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
)
if
sys
.
argv
[
1
]
==
"bow"
:
train
(
train_reader
,
word_dict
,
bow_net
,
use_cuda
=
False
,
parallel
=
False
,
save_dirname
=
"bow_model"
,
lr
=
0.002
,
pass_num
=
30
,
batch_size
=
128
)
train
(
train_reader
,
word_dict
,
bow_net
,
use_cuda
=
False
,
parallel
=
False
,
save_dirname
=
"bow_model"
,
lr
=
0.002
,
pass_num
=
30
,
batch_size
=
128
)
elif
sys
.
argv
[
1
]
==
"cnn"
:
train
(
train_reader
,
word_dict
,
cnn_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"cnn_model"
,
lr
=
0.01
,
pass_num
=
30
,
batch_size
=
4
)
train
(
train_reader
,
word_dict
,
cnn_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"cnn_model"
,
lr
=
0.01
,
pass_num
=
30
,
batch_size
=
4
)
elif
sys
.
argv
[
1
]
==
"lstm"
:
train
(
train_reader
,
word_dict
,
lstm_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"lstm_model"
,
lr
=
0.05
,
pass_num
=
30
,
batch_size
=
4
)
train
(
train_reader
,
word_dict
,
lstm_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"lstm_model"
,
lr
=
0.05
,
pass_num
=
30
,
batch_size
=
4
)
elif
sys
.
argv
[
1
]
==
"gru"
:
train
(
train_reader
,
word_dict
,
bow_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"gru_model"
,
lr
=
0.05
,
pass_num
=
30
,
batch_size
=
128
)
train
(
train_reader
,
word_dict
,
lstm_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"gru_model"
,
lr
=
0.05
,
pass_num
=
30
,
batch_size
=
128
)
else
:
print
(
"network name cannot be found!"
)
sys
.
exit
(
1
)
...
...
fluid/text_classification/utils.py
浏览文件 @
339c4cdd
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
...
...
@@ -9,6 +6,7 @@ import time
import
light_imdb
import
tiny_imdb
def
to_lodtensor
(
data
,
place
):
"""
convert to LODtensor
...
...
@@ -45,16 +43,16 @@ def data2tensor(data, place):
"""
data2tensor
"""
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
return
{
"words"
:
input_seq
,
"label"
:
y_data
}
def
prepare_data
(
data_type
=
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
):
def
prepare_data
(
data_type
=
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
):
"""
prepare data
"""
...
...
@@ -73,10 +71,9 @@ def prepare_data(data_type="imdb",
if
data_type
==
"imdb"
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
buf_size
),
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
buf_size
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
...
...
@@ -86,27 +83,23 @@ def prepare_data(data_type="imdb",
elif
data_type
==
"light_imdb"
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
light_imdb
.
train
(
word_dict
),
buf_size
=
buf_size
),
light_imdb
.
train
(
word_dict
),
buf_size
=
buf_size
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
light_imdb
.
test
(
word_dict
),
buf_size
=
buf_size
),
light_imdb
.
test
(
word_dict
),
buf_size
=
buf_size
),
batch_size
=
batch_size
)
elif
data_type
==
"tiny_imdb"
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
tiny_imdb
.
train
(
word_dict
),
buf_size
=
buf_size
),
tiny_imdb
.
train
(
word_dict
),
buf_size
=
buf_size
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
tiny_imdb
.
test
(
word_dict
),
buf_size
=
buf_size
),
tiny_imdb
.
test
(
word_dict
),
buf_size
=
buf_size
),
batch_size
=
batch_size
)
else
:
raise
RuntimeError
(
"no such dataset"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录