From 339c4cdd93cf570cef55cee61aa729f088ca137b Mon Sep 17 00:00:00 2001 From: gmcather Date: Fri, 13 Apr 2018 05:22:14 +0000 Subject: [PATCH] fix code style --- fluid/text_classification/infer.py | 23 +- fluid/text_classification/model.py | 436 +++++++++++++++++++++++++++++ fluid/text_classification/nets.py | 128 ++++----- fluid/text_classification/train.py | 106 +++---- fluid/text_classification/utils.py | 35 +-- 5 files changed, 567 insertions(+), 161 deletions(-) create mode 100644 fluid/text_classification/model.py diff --git a/fluid/text_classification/infer.py b/fluid/text_classification/infer.py index 3d4ee357..cfb1cf7e 100644 --- a/fluid/text_classification/infer.py +++ b/fluid/text_classification/infer.py @@ -1,6 +1,3 @@ -""" -For http://wiki.baidu.com/display/LegoNet/Text+Classification -""" import paddle.fluid as fluid import paddle.v2 as paddle import numpy as np @@ -11,9 +8,7 @@ import contextlib import utils -def infer(test_reader, - use_cuda, - model_path=None): +def infer(test_reader, use_cuda, model_path=None): """ inference function """ @@ -27,30 +22,28 @@ def infer(test_reader, inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): [inference_program, feed_target_names, - fetch_targets] = fluid.io.load_inference_model(model_path, exe) + fetch_targets] = fluid.io.load_inference_model(model_path, exe) total_acc = 0.0 total_count = 0 for data in test_reader(): acc = exe.run(inference_program, - feed = utils.data2tensor(data, place), - fetch_list=fetch_targets, - return_numpy=True) + feed=utils.data2tensor(data, place), + fetch_list=fetch_targets, + return_numpy=True) total_acc += acc[0] * len(data) total_count += len(data) - + avg_acc = total_acc / total_count print("model_path: %s, avg_acc: %f" % (model_path, avg_acc)) if __name__ == "__main__": word_dict, train_reader, test_reader = utils.prepare_data( - "imdb", self_dict = False, - batch_size = 128, buf_size = 50000) + "imdb", self_dict = False, batch_size = 128, buf_size = 50000) model_path = sys.argv[1] for i in range(30): epoch_path = model_path + "/" + "epoch" + str(i) - infer(test_reader, use_cuda=False, - model_path=epoch_path) + infer(test_reader, use_cuda=False, model_path=epoch_path) diff --git a/fluid/text_classification/model.py b/fluid/text_classification/model.py new file mode 100644 index 00000000..b574ac12 --- /dev/null +++ b/fluid/text_classification/model.py @@ -0,0 +1,436 @@ +""" +For http://wiki.baidu.com/display/LegoNet/Text+Classification +""" +import paddle.fluid as fluid +import paddle.v2 as paddle +import numpy as np +import sys +import time +import unittest +import contextlib +import utils + + +def bow_net(data, label, + dict_dim, + emb_dim=128, + hid_dim=128, + hid_dim2=96, + class_dim=2): + """ + bow net + """ + emb = fluid.layers.embedding(input=data, + size=[dict_dim, emb_dim]) + bow = fluid.layers.sequence_pool( + input=emb, + pool_type='sum') + bow_tanh = fluid.layers.tanh(bow) + fc_1 = fluid.layers.fc(input=bow_tanh, + size=hid_dim, act = "tanh") + fc_2 = fluid.layers.fc(input=fc_1, + size=hid_dim2, act = "tanh") + prediction = fluid.layers.fc(input=[fc_2], + size=class_dim, + act="softmax") + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc = fluid.layers.accuracy(input=prediction, label=label) + + return avg_cost, acc, prediction + + +def conv_net(data, label, + dict_dim, + emb_dim=128, + hid_dim=128, + hid_dim2=96, + class_dim=2, + win_size=3): + """ + conv net + """ + emb = fluid.layers.embedding(input=data, + size=[dict_dim, emb_dim]) + + conv_3 = fluid.nets.sequence_conv_pool(input=emb, + num_filters=hid_dim, + filter_size=win_size, + act="tanh", + pool_type="max") + + fc_1 = fluid.layers.fc(input=[conv_3], + size=hid_dim2) + + prediction = fluid.layers.fc(input=[fc_1], + size=class_dim, + act="softmax") + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc = fluid.layers.accuracy(input=prediction, label=label) + + return avg_cost, acc, prediction + + +def lstm_net(data, label, + dict_dim, + emb_dim=128, + hid_dim=128, + hid_dim2=96, + class_dim=2): + """ + lstm net + """ + emb = fluid.layers.embedding(input=data, + size=[dict_dim, emb_dim]) + + fc0 = fluid.layers.fc(input=emb, + size=hid_dim * 4, + act='tanh') + + lstm_h, c = fluid.layers.dynamic_lstm(input=fc0, + size=hid_dim * 4, + is_reverse=False) + + lstm_max = fluid.layers.sequence_pool(input=lstm_h, + pool_type='max') + lstm_max_tanh = fluid.layers.tanh(lstm_max) + + fc1 = fluid.layers.fc(input=lstm_max_tanh, + size=hid_dim2, + act='tanh') + + prediction = fluid.layers.fc(input=fc1, + size=class_dim, + act='softmax') + + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc = fluid.layers.accuracy(input=prediction, label=label) + + return avg_cost, acc, prediction + + +def gru_net(data, label, + dict_dim, + emb_dim=128, + hid_dim=128, + hid_dim2=96, + class_dim=2): + """ + gru net + """ + emb = fluid.layers.embedding(input=data, + size=[dict_dim, emb_dim]) + + fc0 = fluid.layers.fc(input=emb, + size=hid_dim * 3) + + gru_h = fluid.layers.dynamic_gru(input=fc0, + size=hid_dim, + is_reverse=False) + + gru_max = fluid.layers.sequence_pool(input=gru_h, + pool_type='max') + gru_max_tanh = fluid.layers.tanh(gru_max) + + fc1 = fluid.layers.fc(input=gru_max_tanh, + size=hid_dim2, + act='tanh') + + prediction = fluid.layers.fc(input=fc1, + size=class_dim, + act='softmax') + + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc = fluid.layers.accuracy(input=prediction, label=label) + + return avg_cost, acc, prediction + + +def train(train_reader, + word_dict, + network, + use_cuda, + parallel, + save_dirname, + lr=0.2, + batch_size=128, + pass_num=30): + """ + train network + """ + data = fluid.layers.data( + name="words", + shape=[1], + dtype="int64", + lod_level=1) + + label = fluid.layers.data( + name="label", + shape=[1], + dtype="int64") + + if not parallel: + cost, acc, prediction = network( + data, label, len(word_dict)) + else: + places = fluid.layers.get_places(device_count = 2) + pd = fluid.layers.ParallelDo(places) + with pd.do(): + cost, acc, prediction = network( + pd.read_input(data), + pd.read_input(label), + len(word_dict)) + + pd.write_output(cost) + pd.write_output(acc) + + cost, acc = pd() + cost = fluid.layers.mean(cost) + acc = fluid.layers.mean(acc) + + sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr) + sgd_optimizer.minimize(cost) + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + feeder = fluid.DataFeeder(feed_list=[data, label], place=place) + + exe.run(fluid.default_startup_program()) + for pass_id in xrange(pass_num): + avg_cost_list, avg_acc_list = [], [] + for data in train_reader(): + avg_cost_np, avg_acc_np = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[cost, acc]) + avg_cost_list.append(avg_cost_np) + avg_acc_list.append(avg_acc_np) + print("pass_id: %d, avg_acc: %f" % (pass_id, np.mean(avg_acc_list))) + # save_model + fluid.io.save_inference_model( + save_dirname, + ["words", "label"], + acc, exe) + + +def test(test_reader, use_cuda, + save_dirname=None): + """ + test function + """ + if save_dirname is None: + print(str(save_dirname) + " cannot be found") + return + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + + inference_scope = fluid.core.Scope() + with fluid.scope_guard(inference_scope): + [inference_program, feed_target_names, + fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) + + total_acc = 0.0 + total_count = 0 + for data in test_reader(): + acc = exe.run(inference_program, + feed = utils.data2tensor(data, place), + fetch_list=fetch_targets, + return_numpy=True) + total_acc += acc[0] * len(data) + total_count += len(data) + print("test_acc: %f" % (total_acc / total_count)) + + +def main(network, + dataset, + model_conf, + use_cuda, + parallel, + batch_size, + lr=0.2, + pass_num=30): + """ + main function + """ + word_dict, train_reader, test_reader = utils.prepare_data( + dataset, self_dict = False, + batch_size = batch_size, buf_size = 50000) + + train(train_reader, word_dict, + network, use_cuda=use_cuda, + parallel = parallel, + save_dirname=model_conf, + lr=lr, + pass_num=pass_num, + batch_size=batch_size) + + test(test_reader, use_cuda=use_cuda, + save_dirname=model_conf) + + +class TestModel(unittest.TestCase): + """ + Test Case Module + """ + + @contextlib.contextmanager + def new_program_scope(self): + """ + setting external env + """ + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + yield + + @unittest.skip(reason='success, total time:14.19s') + def test_bow_cpu(self): + """ + Test bow cpu single thread + """ + with self.new_program_scope(): + main(bow_net, "tiny_imdb", + "bow.cpu", False, False, 128) + + @unittest.skip(reason='success, total time:7.62s') + def test_bow_gpu(self): + """ + Test bow gpu single thread + """ + with self.new_program_scope(): + main(bow_net, "tiny_imdb", + "bow.gpu", True, False, 128) + + @unittest.skip(reason='success, total time:15.02s') + def test_bow_cpu_mthread(self): + """ + Test bow cpu mthread + """ + with self.new_program_scope(): + main(bow_net, "tiny_imdb", + "bow.cpu_mthread", False, True, 128) + + @unittest.skip(reason='success, total time:9.45s') + def test_bow_gpu_mthread(self): + """ + Test bow gpu mthread + """ + with self.new_program_scope(): + main(bow_net, "tiny_imdb", + "bow.gpu_mthread", True, True, 128) + + @unittest.skip(reason='success, total time:85.0s') + def test_cnn_cpu(self): + """ + Test cnn cpu single thread + """ + with self.new_program_scope(): + main(conv_net, "tiny_imdb", + "conv.cpu", False, False, 128) + + @unittest.skip(reason='success, total time:12.0s') + def test_cnn_gpu(self): + """ + Test cnn gpu single thread + """ + with self.new_program_scope(): + main(conv_net, "tiny_imdb", + "conv.gpu", True, False, 128) + + @unittest.skip(reason='success, total time:53.0s') + def test_cnn_cpu_mthread(self): + """ + Test cnn cpu mthread + """ + with self.new_program_scope(): + main(conv_net, "tiny_imdb", + "conv.cpu_mthread", False, True, 128) + + @unittest.skip(reason='success, total time:10.9s') + def test_cnn_gpu_mthread(self): + """ + Test cnn gpu mthread + """ + with self.new_program_scope(): + main(conv_net, "tiny_imdb", + "conv.gpu_mthread", True, True, 128) + + @unittest.skip(reason='success, total time:232.5s') + def test_lstm_cpu(self): + """ + Test lstm cpu single thread + """ + with self.new_program_scope(): + main(lstm_net, "tiny_imdb", + "lstm.cpu", False, False, 128) + + @unittest.skip(reason='success, total time:26.5s') + def test_lstm_gpu(self): + """ + Test lstm gpu single thread + """ + with self.new_program_scope(): + main(lstm_net, "tiny_imdb", + "lstm.gpu", True, False, 128) + + @unittest.skip(reason='success, total time:135.0s') + def test_lstm_cpu_mthread(self): + """ + Test lstm cpu mthread + """ + with self.new_program_scope(): + main(lstm_net, "tiny_imdb", + "lstm.cpu_mthread", False, True, 128) + + @unittest.skip(reason='success, total time:26.23s') + def test_lstm_gpu_mthread(self): + """ + Test lstm gpu mthread + """ + with self.new_program_scope(): + main(lstm_net, "tiny_imdb", + "lstm.gpu_mthread", True, True, 128) + + @unittest.skip(reason='success, total time:163.0s') + def test_gru_cpu(self): + """ + Test gru cpu single thread + """ + with self.new_program_scope(): + main(gru_net, "tiny_imdb", + "gru.cpu", False, False, 128) + + @unittest.skip(reason='success, total time:28.88s') + def test_gru_gpu(self): + """ + Test gru gpu single thread + """ + with self.new_program_scope(): + main(gru_net, "tiny_imdb", + "gru.gpu", True, False, 128, 0.02, 30) + + @unittest.skip(reason='success, total time:97.15s') + def test_gru_cpu_mthread(self): + """ + Test gru cpu mthread + """ + with self.new_program_scope(): + main(gru_net, "tiny_imdb", + "gru.cpu_mthread", False, True, 128) + + @unittest.skip(reason='success, total time:26.05s') + def test_gru_gpu_mthread(self): + """ + Test gru gpu mthread + """ + with self.new_program_scope(): + main(gru_net, "tiny_imdb", + "gru.gpu_mthread", True, True, 128) + +if __name__ == "__main__": + unittest.main() diff --git a/fluid/text_classification/nets.py b/fluid/text_classification/nets.py index fe441c05..558bde91 100644 --- a/fluid/text_classification/nets.py +++ b/fluid/text_classification/nets.py @@ -1,6 +1,3 @@ -""" -For http://wiki.baidu.com/display/LegoNet/Text+Classification -""" import paddle.fluid as fluid import paddle.v2 as paddle import numpy as np @@ -8,7 +5,8 @@ import sys import time -def bow_net(data, label, +def bow_net(data, + label, dict_dim, emb_dim=128, hid_dim=128, @@ -17,27 +15,21 @@ def bow_net(data, label, """ bow net """ - emb = fluid.layers.embedding(input=data, - size=[dict_dim, emb_dim]) - bow = fluid.layers.sequence_pool( - input=emb, - pool_type='sum') + emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim]) + bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) - fc_1 = fluid.layers.fc(input=bow_tanh, - size=hid_dim, act = "tanh") - fc_2 = fluid.layers.fc(input=fc_1, - size=hid_dim2, act = "tanh") - prediction = fluid.layers.fc(input=[fc_2], - size=class_dim, - act="softmax") + fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") + fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") + prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) - + return avg_cost, acc, prediction -def cnn_net(data, label, +def cnn_net(data, + label, dict_dim, emb_dim=128, hid_dim=128, @@ -47,70 +39,61 @@ def cnn_net(data, label, """ conv net """ - emb = fluid.layers.embedding(input=data, - size=[dict_dim, emb_dim]) + emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim]) conv_3 = fluid.nets.sequence_conv_pool(input=emb, - num_filters=hid_dim, - filter_size=win_size, - act="tanh", - pool_type="max") + num_filters=hid_dim, + filter_size=win_size, + act="tanh", + pool_type="max") - fc_1 = fluid.layers.fc(input=[conv_3], - size=hid_dim2) + fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2) - prediction = fluid.layers.fc(input=[fc_1], - size=class_dim, - act="softmax") + prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) - + return avg_cost, acc, prediction -def lstm_net(data, label, - dict_dim, - emb_dim=128, - hid_dim=128, - hid_dim2=96, - class_dim=2, - emb_lr=30.0): +def lstm_net(data, + label, + dict_dim, + emb_dim=128, + hid_dim=128, + hid_dim2=96, + class_dim=2, + emb_lr=30.0): """ lstm net """ - emb = fluid.layers.embedding(input=data, - size=[dict_dim, emb_dim], - param_attr=fluid.ParamAttr(learning_rate=emb_lr)) + emb = fluid.layers.embedding( + input=data, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr(learning_rate=emb_lr)) - fc0 = fluid.layers.fc(input=emb, - size=hid_dim * 4, - act='tanh') + fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh') - lstm_h, c = fluid.layers.dynamic_lstm(input=fc0, - size=hid_dim * 4, - is_reverse=False) + lstm_h, c = fluid.layers.dynamic_lstm( + input=fc0, size=hid_dim * 4, is_reverse=False) - lstm_max = fluid.layers.sequence_pool(input=lstm_h, - pool_type='max') + lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max') lstm_max_tanh = fluid.layers.tanh(lstm_max) - fc1 = fluid.layers.fc(input=lstm_max_tanh, - size=hid_dim2, - act='tanh') + fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh') - prediction = fluid.layers.fc(input=fc1, - size=class_dim, - act='softmax') + prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) - + return avg_cost, acc, prediction -def gru_net(data, label, +def gru_net(data, + label, dict_dim, emb_dim=128, hid_dim=128, @@ -120,32 +103,21 @@ def gru_net(data, label, """ gru net """ - emb = fluid.layers.embedding(input=data, - size=[dict_dim, emb_dim], - param_attr=fluid.ParamAttr(learning_rate=emb_lr)) - - fc0 = fluid.layers.fc(input=emb, - size=hid_dim * 3) - - gru_h = fluid.layers.dynamic_gru(input=fc0, - size=hid_dim, - is_reverse=False) - - gru_max = fluid.layers.sequence_pool(input=gru_h, - pool_type='max') + emb = fluid.layers.embedding( + input=data, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr(learning_rate=emb_lr)) + + fc0 = fluid.layers.fc(input=emb, size=hid_dim * 3) + gru_h = fluid.layers.dynamic_gru(input=fc0, size=hid_dim, is_reverse=False) + gru_max = fluid.layers.sequence_pool(input=gru_h, pool_type='max') gru_max_tanh = fluid.layers.tanh(gru_max) - - fc1 = fluid.layers.fc(input=gru_max_tanh, - size=hid_dim2, - act='tanh') - - prediction = fluid.layers.fc(input=fc1, - size=class_dim, - act='softmax') + fc1 = fluid.layers.fc(input=gru_max_tanh, size=hid_dim2, act='tanh') + prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) - + return avg_cost, acc, prediction diff --git a/fluid/text_classification/train.py b/fluid/text_classification/train.py index 56d59069..d437983e 100644 --- a/fluid/text_classification/train.py +++ b/fluid/text_classification/train.py @@ -1,6 +1,3 @@ -""" -For http://wiki.baidu.com/display/LegoNet/Text+Classification -""" import paddle.fluid as fluid import paddle.v2 as paddle import numpy as np @@ -15,39 +12,30 @@ from nets import lstm_net from nets import gru_net def train(train_reader, - word_dict, - network, - use_cuda, - parallel, - save_dirname, - lr=0.2, - batch_size=128, - pass_num=30): + word_dict, + network, + use_cuda, + parallel, + save_dirname, + lr=0.2, + batch_size=128, + pass_num=30): """ train network """ data = fluid.layers.data( - name="words", - shape=[1], - dtype="int64", - lod_level=1) + name="words", shape=[1], dtype="int64", lod_level=1) - label = fluid.layers.data( - name="label", - shape=[1], - dtype="int64") + label = fluid.layers.data(name="label", shape=[1], dtype="int64") if not parallel: - cost, acc, prediction = network( - data, label, len(word_dict)) + cost, acc, prediction = network(data, label, len(word_dict)) else: - places = fluid.layers.get_places(device_count = 2) + places = fluid.layers.get_places(device_count=2) pd = fluid.layers.ParallelDo(places) with pd.do(): cost, acc, prediction = network( - pd.read_input(data), - pd.read_input(label), - len(word_dict)) + pd.read_input(data), pd.read_input(label), len(word_dict)) pd.write_output(cost) pd.write_output(acc) @@ -68,8 +56,7 @@ def train(train_reader, data_size, data_count, total_acc, total_cost = 0, 0, 0.0, 0.0 for data in train_reader(): avg_cost_np, avg_acc_np = exe.run(fluid.default_main_program(), - feed=feeder.feed(data), - fetch_list=[cost, acc]) + feed=feeder.feed(data), fetch_list=[cost, acc]) data_size = len(data) total_acc += data_size * avg_acc_np total_cost += data_size * avg_cost_np @@ -77,36 +64,61 @@ def train(train_reader, avg_cost = total_cost / data_count avg_acc = total_acc / data_count - print("pass_id: %d, avg_acc: %f, avg_cost: %f" % (pass_id, avg_acc, avg_cost)) - + print("pass_id: %d, avg_acc: %f, avg_cost: %f" % + (pass_id, avg_acc, avg_cost)) + epoch_model = save_dirname + "/" + "epoch" + str(pass_id) - fluid.io.save_inference_model( - epoch_model, - ["words", "label"], - acc, exe) + fluid.io.save_inference_model(epoch_model, ["words", "label"], acc, exe) def train_net(): word_dict, train_reader, test_reader = utils.prepare_data( - "imdb", self_dict = False, - batch_size = 128, buf_size = 50000) + "imdb", self_dict=False, batch_size=128, buf_size=50000) if sys.argv[1] == "bow": - train(train_reader, word_dict, bow_net, use_cuda=False, - parallel=False, save_dirname="bow_model", lr=0.002, - pass_num=30, batch_size=128) + train( + train_reader, + word_dict, + bow_net, + use_cuda=False, + parallel=False, + save_dirname="bow_model", + lr=0.002, + pass_num=30, + batch_size=128) elif sys.argv[1] == "cnn": - train(train_reader, word_dict, cnn_net, use_cuda=True, - parallel=False, save_dirname="cnn_model", lr=0.01, - pass_num=30, batch_size=4) + train( + train_reader, + word_dict, + cnn_net, + use_cuda=True, + parallel=False, + save_dirname="cnn_model", + lr=0.01, + pass_num=30, + batch_size=4) elif sys.argv[1] == "lstm": - train(train_reader, word_dict, lstm_net, use_cuda=True, - parallel=False, save_dirname="lstm_model", lr=0.05, - pass_num=30, batch_size=4) + train( + train_reader, + word_dict, + lstm_net, + use_cuda=True, + parallel=False, + save_dirname="lstm_model", + lr=0.05, + pass_num=30, + batch_size=4) elif sys.argv[1] == "gru": - train(train_reader, word_dict, bow_net, use_cuda=True, - parallel=False, save_dirname="gru_model", lr=0.05, - pass_num=30, batch_size=128) + train( + train_reader, + word_dict, + lstm_net, + use_cuda=True, + parallel=False, + save_dirname="gru_model", + lr=0.05, + pass_num=30, + batch_size=128) else: print("network name cannot be found!") sys.exit(1) diff --git a/fluid/text_classification/utils.py b/fluid/text_classification/utils.py index 4fa1a04c..6465dcf9 100644 --- a/fluid/text_classification/utils.py +++ b/fluid/text_classification/utils.py @@ -1,6 +1,3 @@ -""" -For http://wiki.baidu.com/display/LegoNet/Text+Classification -""" import paddle.fluid as fluid import paddle.v2 as paddle import numpy as np @@ -9,6 +6,7 @@ import time import light_imdb import tiny_imdb + def to_lodtensor(data, place): """ convert to LODtensor @@ -45,16 +43,16 @@ def data2tensor(data, place): """ data2tensor """ - input_seq = to_lodtensor(map(lambda x:x[0], data), place) + input_seq = to_lodtensor(map(lambda x: x[0], data), place) y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) return {"words": input_seq, "label": y_data} -def prepare_data(data_type="imdb", - self_dict=False, - batch_size=128, - buf_size=50000): +def prepare_data(data_type="imdb", + self_dict=False, + batch_size=128, + buf_size=50000): """ prepare data """ @@ -73,10 +71,9 @@ def prepare_data(data_type="imdb", if data_type == "imdb": train_reader = paddle.batch( paddle.reader.shuffle( - paddle.dataset.imdb.train(word_dict), - buf_size = buf_size), + paddle.dataset.imdb.train(word_dict), buf_size = buf_size), batch_size = batch_size) - + test_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.imdb.test(word_dict), @@ -86,27 +83,23 @@ def prepare_data(data_type="imdb", elif data_type == "light_imdb": train_reader = paddle.batch( paddle.reader.shuffle( - light_imdb.train(word_dict), - buf_size = buf_size), + light_imdb.train(word_dict), buf_size = buf_size), batch_size = batch_size) - + test_reader = paddle.batch( paddle.reader.shuffle( - light_imdb.test(word_dict), - buf_size = buf_size), + light_imdb.test(word_dict), buf_size = buf_size), batch_size = batch_size) elif data_type == "tiny_imdb": train_reader = paddle.batch( paddle.reader.shuffle( - tiny_imdb.train(word_dict), - buf_size = buf_size), + tiny_imdb.train(word_dict), buf_size = buf_size), batch_size = batch_size) - + test_reader = paddle.batch( paddle.reader.shuffle( - tiny_imdb.test(word_dict), - buf_size = buf_size), + tiny_imdb.test(word_dict), buf_size = buf_size), batch_size = batch_size) else: raise RuntimeError("no such dataset") -- GitLab