提交 2bb4e4a6 编写于 作者: Y Yancey1989

polish code

上级 2e110d79
...@@ -3,33 +3,30 @@ import os ...@@ -3,33 +3,30 @@ import os
import numpy as np import numpy as np
import math import math
import random import random
import torchvision import torch
import torch.utils.data
from torch.utils.data.distributed import DistributedSampler
import torchvision.transforms as transforms import torchvision.transforms as transforms
import torchvision.datasets as datasets import torchvision.datasets as datasets
from torch.utils.data.sampler import Sampler
import torchvision
import pickle import pickle
from tqdm import tqdm from tqdm import tqdm
import time import time
import multiprocessing import multiprocessing
TRAINER_NUMS = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", "0"))
FINISH_EVENT = "FINISH_EVENT" FINISH_EVENT = "FINISH_EVENT"
class PaddleDataLoader(object): class PaddleDataLoader(object):
def __init__(self, torch_dataset, indices=None, concurrent=16, queue_size=3072, shuffle=True, batch_size=224, is_distributed=True): def __init__(self, torch_dataset, indices=None, concurrent=24, queue_size=3072, shuffle=True):
self.torch_dataset = torch_dataset self.torch_dataset = torch_dataset
self.data_queue = multiprocessing.Queue(queue_size) self.data_queue = multiprocessing.Queue(queue_size)
self.indices = indices self.indices = indices
self.concurrent = concurrent self.concurrent = concurrent
self.shuffle_seed = 0
self.shuffle = shuffle self.shuffle = shuffle
self.is_distributed = is_distributed
self.batch_size = batch_size
def _worker_loop(self, dataset, worker_indices, worker_id): def _worker_loop(self, dataset, worker_indices, worker_id):
cnt = 0 cnt = 0
print("worker [%d], len: [%d], indices: [%s]"%(worker_id, len(worker_indices), worker_indices[:10]))
for idx in worker_indices: for idx in worker_indices:
cnt += 1 cnt += 1
img, label = self.torch_dataset[idx] img, label = self.torch_dataset[idx]
...@@ -43,28 +40,21 @@ class PaddleDataLoader(object): ...@@ -43,28 +40,21 @@ class PaddleDataLoader(object):
worker_processes = [] worker_processes = []
total_img = len(self.torch_dataset) total_img = len(self.torch_dataset)
print("total image: ", total_img) print("total image: ", total_img)
if self.indices is None: #if self.indices is None:
self.indices = [i for i in xrange(total_img)]
if self.shuffle: if self.shuffle:
random.seed(self.shuffle_seed) self.indices = [i for i in xrange(total_img)]
random.seed(time.time())
random.shuffle(self.indices) random.shuffle(self.indices)
worker_indices = self.indices print("shuffle indices: %s ..." % self.indices[:10])
if self.is_distributed:
cnt_per_node = len(self.indices) / TRAINER_NUMS imgs_per_worker = int(math.ceil(total_img / self.concurrent))
offset = TRAINER_ID * cnt_per_node
worker_indices = self.indices[offset: (offset + cnt_per_node)]
if len(worker_indices) % self.batch_size != 0:
worker_indices += worker_indices[-(self.batch_size - (len(worker_indices) % self.batch_size)):]
print("shuffle: [%d], shuffle seed: [%d], worker indices len: [%d], %s" % (self.shuffle, self.shuffle_seed, len(worker_indices), worker_indices[:10]))
cnt_per_thread = int(math.ceil(len(worker_indices) / self.concurrent))
for i in xrange(self.concurrent): for i in xrange(self.concurrent):
offset = i * cnt_per_thread start = i * imgs_per_worker
thread_incides = worker_indices[offset: (offset + cnt_per_thread)] end = (i + 1) * imgs_per_worker if i != self.concurrent - 1 else None
print("loader thread: [%d] start idx: [%d], end idx: [%d], len: [%d]" % (i, offset, (offset + cnt_per_thread), len(thread_incides))) sliced_indices = self.indices[start:end]
w = multiprocessing.Process( w = multiprocessing.Process(
target=self._worker_loop, target=self._worker_loop,
args=(self.torch_dataset, thread_incides, i) args=(self.torch_dataset, sliced_indices, i)
) )
w.daemon = True w.daemon = True
w.start() w.start()
...@@ -80,13 +70,13 @@ class PaddleDataLoader(object): ...@@ -80,13 +70,13 @@ class PaddleDataLoader(object):
return _reader_creator return _reader_creator
def train(traindir, bs, sz, min_scale=0.08): def train(traindir, sz, min_scale=0.08):
train_tfms = [ train_tfms = [
transforms.RandomResizedCrop(sz, scale=(min_scale, 1.0)), transforms.RandomResizedCrop(sz, scale=(min_scale, 1.0)),
transforms.RandomHorizontalFlip() transforms.RandomHorizontalFlip()
] ]
train_dataset = datasets.ImageFolder(traindir, transforms.Compose(train_tfms)) train_dataset = datasets.ImageFolder(traindir, transforms.Compose(train_tfms))
return PaddleDataLoader(train_dataset, batch_size=bs) return PaddleDataLoader(train_dataset).reader()
def test(valdir, bs, sz, rect_val=False): def test(valdir, bs, sz, rect_val=False):
if rect_val: if rect_val:
...@@ -96,12 +86,12 @@ def test(valdir, bs, sz, rect_val=False): ...@@ -96,12 +86,12 @@ def test(valdir, bs, sz, rect_val=False):
ar_tfms = [transforms.Resize(int(sz* 1.14)), CropArTfm(idx2ar, sz)] ar_tfms = [transforms.Resize(int(sz* 1.14)), CropArTfm(idx2ar, sz)]
val_dataset = ValDataset(valdir, transform=ar_tfms) val_dataset = ValDataset(valdir, transform=ar_tfms)
return PaddleDataLoader(val_dataset, concurrent=1, indices=idx_sorted, shuffle=False, is_distributed=False) return PaddleDataLoader(val_dataset, concurrent=1, indices=idx_sorted, shuffle=False).reader()
val_tfms = [transforms.Resize(int(sz* 1.14)), transforms.CenterCrop(sz)] val_tfms = [transforms.Resize(int(sz* 1.14)), transforms.CenterCrop(sz)]
val_dataset = datasets.ImageFolder(valdir, transforms.Compose(val_tfms)) val_dataset = datasets.ImageFolder(valdir, transforms.Compose(val_tfms))
return PaddleDataLoader(val_dataset, is_distributed=False) return PaddleDataLoader(val_dataset).reader()
class ValDataset(datasets.ImageFolder): class ValDataset(datasets.ImageFolder):
...@@ -122,6 +112,7 @@ class ValDataset(datasets.ImageFolder): ...@@ -122,6 +112,7 @@ class ValDataset(datasets.ImageFolder):
return sample, target return sample, target
class CropArTfm(object): class CropArTfm(object):
def __init__(self, idx2ar, target_size): def __init__(self, idx2ar, target_size):
self.idx2ar, self.target_size = idx2ar, target_size self.idx2ar, self.target_size = idx2ar, target_size
...@@ -134,7 +125,7 @@ class CropArTfm(object): ...@@ -134,7 +125,7 @@ class CropArTfm(object):
else: else:
h = int(self.target_size * target_ar) h = int(self.target_size * target_ar)
size = (self.target_size, h // 8 * 8) size = (self.target_size, h // 8 * 8)
return transforms.functional.center_crop(img, size) return torchvision.transforms.functional.center_crop(img, size)
def sort_ar(valdir): def sort_ar(valdir):
...@@ -166,5 +157,15 @@ def map_idx2ar(idx_ar_sorted, batch_size): ...@@ -166,5 +157,15 @@ def map_idx2ar(idx_ar_sorted, batch_size):
return idx2ar return idx2ar
if __name__ == "__main__": if __name__ == "__main__":
reader = test("/work/fast_resnet_data", 64, 128).reader() #ds, sampler = create_validation_set("/data/imagenet/validation", 128, 288, True, True)
print(next(reader())) #for item in sampler:
\ No newline at end of file # for idx in item:
# ds[idx]
import time
test_reader = test(valdir="/data/imagenet/validation", bs=64, sz=288, rect_val=True)
start_ts = time.time()
for idx, data in enumerate(test_reader()):
print(idx, data[0], data[0].shape, data[1])
if idx == 2:
break
\ No newline at end of file
...@@ -30,14 +30,12 @@ import paddle.fluid.core as core ...@@ -30,14 +30,12 @@ import paddle.fluid.core as core
import paddle.fluid.profiler as profiler import paddle.fluid.profiler as profiler
import utils import utils
## visreader for imagenet
import torchvision_reader
__all__ = ["FastResNet"] __all__ = ["FastResNet"]
class FastResNet(): class FastResNet():
def __init__(self, layers=50): def __init__(self, layers=50, is_train=True):
self.layers = layers self.layers = layers
self.is_train = is_train
def net(self, input, class_dim=1000, img_size=224, is_train=True): def net(self, input, class_dim=1000, img_size=224, is_train=True):
layers = self.layers layers = self.layers
...@@ -54,7 +52,7 @@ class FastResNet(): ...@@ -54,7 +52,7 @@ class FastResNet():
num_filters = [64, 128, 256, 512] num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer( conv = self.conv_bn_layer(
input=input, num_filters=64, filter_size=7, stride=2, act='relu', is_train=is_train) input=input, num_filters=64, filter_size=7, stride=2, act='relu')
conv = fluid.layers.pool2d( conv = fluid.layers.pool2d(
input=conv, input=conv,
pool_size=3, pool_size=3,
...@@ -73,6 +71,7 @@ class FastResNet(): ...@@ -73,6 +71,7 @@ class FastResNet():
input=conv, pool_size=pool_size, pool_type='avg', global_pooling=True) input=conv, pool_size=pool_size, pool_type='avg', global_pooling=True)
out = fluid.layers.fc(input=pool, out = fluid.layers.fc(input=pool,
size=class_dim, size=class_dim,
act=None,
param_attr=fluid.param_attr.ParamAttr( param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(0.0, 0.01), initializer=fluid.initializer.NormalInitializer(0.0, 0.01),
regularizer=fluid.regularizer.L2Decay(1e-4)), regularizer=fluid.regularizer.L2Decay(1e-4)),
...@@ -87,8 +86,7 @@ class FastResNet(): ...@@ -87,8 +86,7 @@ class FastResNet():
stride=1, stride=1,
groups=1, groups=1,
act=None, act=None,
bn_init_value=1.0, bn_init_value=1.0):
is_train=True):
conv = fluid.layers.conv2d( conv = fluid.layers.conv2d(
input=input, input=input,
num_filters=num_filters, num_filters=num_filters,
...@@ -98,10 +96,8 @@ class FastResNet(): ...@@ -98,10 +96,8 @@ class FastResNet():
groups=groups, groups=groups,
act=None, act=None,
bias_attr=False, bias_attr=False,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(regularizer=fluid.regularizer.L2Decay(1e-4)))
initializer=fluid.initializer.MSRAInitializer(), return fluid.layers.batch_norm(input=conv, act=act, is_test=not self.is_train,
regularizer=fluid.regularizer.L2Decay(1e-4)))
return fluid.layers.batch_norm(input=conv, act=act, is_test=not is_train,
param_attr=fluid.param_attr.ParamAttr( param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Constant(bn_init_value), initializer=fluid.initializer.Constant(bn_init_value),
regularizer=None)) regularizer=None))
...@@ -129,3 +125,67 @@ class FastResNet(): ...@@ -129,3 +125,67 @@ class FastResNet():
short = self.shortcut(input, num_filters * 4, stride) short = self.shortcut(input, num_filters * 4, stride)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def lr_decay(lrs, epochs, bs, total_image):
boundaries = []
values = []
for idx, epoch in enumerate(epochs):
step = total_image // bs[idx]
if step * bs[idx] < total_image:
step += 1
ratio = (lrs[idx][1] - lrs[idx][0])*1.0 / (epoch[1] - epoch[0])
lr_base = lrs[idx][0]
for s in xrange(epoch[0], epoch[1]):
if boundaries:
boundaries.append(boundaries[-1] + step)
else:
boundaries = [step]
lr = lr_base + ratio * (s - epoch[0])
values.append(lr)
print("epoch: [%d], steps: [%d], lr: [%f]" % (s, boundaries[-1], values[-1]))
values.append(lrs[-1])
print("epoch: [%d:], steps: [%d:], lr:[%f]" % (epochs[-1][-1], boundaries[-1], values[-1]))
return boundaries, values
def linear_lr_decay_by_epoch(lr_values, epochs, bs_values, total_images):
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.layers.tensor as tensor
import math
with paddle.fluid.default_main_program()._lr_schedule_guard():
global_step = _decay_step_counter()
lr = tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
with fluid.layers.control_flow.Switch() as switch:
last_steps = 0
for idx, epoch_bound in enumerate(epochs):
start_epoch, end_epoch = epoch_bound
linear_epoch = end_epoch - start_epoch
start_lr, end_lr = lr_values[idx]
linear_lr = end_lr - start_lr
for epoch_step in xrange(linear_epoch):
steps = last_steps + (1 + epoch_step) * total_images / bs_values[idx] + 1
boundary_val = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(steps),
force_cpu=True)
decayed_lr = start_lr + epoch_step * linear_lr * 1.0 / linear_epoch
with switch.case(global_step < boundary_val):
value_var = tensor.fill_constant(shape=[1], dtype='float32', value=float(decayed_lr))
print("steps: [%d], epoch : [%d], decayed_lr: [%f]" % (steps, start_epoch + epoch_step, decayed_lr))
fluid.layers.tensor.assign(value_var, lr)
last_steps = steps
last_value_var = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(lr_values[-1]))
with switch.default():
fluid.layers.tensor.assign(last_value_var, lr)
return lr
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册