Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
2bb4e4a6
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2bb4e4a6
编写于
3月 08, 2019
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish code
上级
2e110d79
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
173 addition
and
236 deletion
+173
-236
fluid/PaddleCV/image_classification/fast_resnet/torchvision_reader.py
...CV/image_classification/fast_resnet/torchvision_reader.py
+34
-33
fluid/PaddleCV/image_classification/fast_resnet/train.py
fluid/PaddleCV/image_classification/fast_resnet/train.py
+68
-192
fluid/PaddleCV/image_classification/models/fast_resnet.py
fluid/PaddleCV/image_classification/models/fast_resnet.py
+71
-11
未找到文件。
fluid/PaddleCV/image_classification/fast_resnet/torchvision_reader.py
浏览文件 @
2bb4e4a6
...
...
@@ -3,33 +3,30 @@ import os
import
numpy
as
np
import
math
import
random
import
torchvision
import
torch
import
torch.utils.data
from
torch.utils.data.distributed
import
DistributedSampler
import
torchvision.transforms
as
transforms
import
torchvision.datasets
as
datasets
from
torch.utils.data.sampler
import
Sampler
import
torchvision
import
pickle
from
tqdm
import
tqdm
import
time
import
multiprocessing
TRAINER_NUMS
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"1"
))
TRAINER_ID
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
FINISH_EVENT
=
"FINISH_EVENT"
class
PaddleDataLoader
(
object
):
def
__init__
(
self
,
torch_dataset
,
indices
=
None
,
concurrent
=
16
,
queue_size
=
3072
,
shuffle
=
True
,
batch_size
=
224
,
is_distributed
=
True
):
def
__init__
(
self
,
torch_dataset
,
indices
=
None
,
concurrent
=
24
,
queue_size
=
3072
,
shuffle
=
True
):
self
.
torch_dataset
=
torch_dataset
self
.
data_queue
=
multiprocessing
.
Queue
(
queue_size
)
self
.
indices
=
indices
self
.
concurrent
=
concurrent
self
.
shuffle_seed
=
0
self
.
shuffle
=
shuffle
self
.
is_distributed
=
is_distributed
self
.
batch_size
=
batch_size
def
_worker_loop
(
self
,
dataset
,
worker_indices
,
worker_id
):
cnt
=
0
print
(
"worker [%d], len: [%d], indices: [%s]"
%
(
worker_id
,
len
(
worker_indices
),
worker_indices
[:
10
]))
for
idx
in
worker_indices
:
cnt
+=
1
img
,
label
=
self
.
torch_dataset
[
idx
]
...
...
@@ -43,28 +40,21 @@ class PaddleDataLoader(object):
worker_processes
=
[]
total_img
=
len
(
self
.
torch_dataset
)
print
(
"total image: "
,
total_img
)
if
self
.
indices
is
None
:
self
.
indices
=
[
i
for
i
in
xrange
(
total_img
)]
#if self.indices is None:
if
self
.
shuffle
:
random
.
seed
(
self
.
shuffle_seed
)
self
.
indices
=
[
i
for
i
in
xrange
(
total_img
)]
random
.
seed
(
time
.
time
())
random
.
shuffle
(
self
.
indices
)
worker_indices
=
self
.
indices
if
self
.
is_distributed
:
cnt_per_node
=
len
(
self
.
indices
)
/
TRAINER_NUMS
offset
=
TRAINER_ID
*
cnt_per_node
worker_indices
=
self
.
indices
[
offset
:
(
offset
+
cnt_per_node
)]
if
len
(
worker_indices
)
%
self
.
batch_size
!=
0
:
worker_indices
+=
worker_indices
[
-
(
self
.
batch_size
-
(
len
(
worker_indices
)
%
self
.
batch_size
)):]
print
(
"shuffle: [%d], shuffle seed: [%d], worker indices len: [%d], %s"
%
(
self
.
shuffle
,
self
.
shuffle_seed
,
len
(
worker_indices
),
worker_indices
[:
10
]))
cnt_per_thread
=
int
(
math
.
ceil
(
len
(
worker_indices
)
/
self
.
concurrent
))
print
(
"shuffle indices: %s ..."
%
self
.
indices
[:
10
])
imgs_per_worker
=
int
(
math
.
ceil
(
total_img
/
self
.
concurrent
))
for
i
in
xrange
(
self
.
concurrent
):
offset
=
i
*
cnt_per_thread
thread_incides
=
worker_indices
[
offset
:
(
offset
+
cnt_per_thread
)]
print
(
"loader thread: [%d] start idx: [%d], end idx: [%d], len: [%d]"
%
(
i
,
offset
,
(
offset
+
cnt_per_thread
),
len
(
thread_incides
)))
start
=
i
*
imgs_per_worker
end
=
(
i
+
1
)
*
imgs_per_worker
if
i
!=
self
.
concurrent
-
1
else
None
sliced_indices
=
self
.
indices
[
start
:
end
]
w
=
multiprocessing
.
Process
(
target
=
self
.
_worker_loop
,
args
=
(
self
.
torch_dataset
,
thread_incid
es
,
i
)
args
=
(
self
.
torch_dataset
,
sliced_indic
es
,
i
)
)
w
.
daemon
=
True
w
.
start
()
...
...
@@ -80,13 +70,13 @@ class PaddleDataLoader(object):
return
_reader_creator
def
train
(
traindir
,
bs
,
sz
,
min_scale
=
0.08
):
def
train
(
traindir
,
sz
,
min_scale
=
0.08
):
train_tfms
=
[
transforms
.
RandomResizedCrop
(
sz
,
scale
=
(
min_scale
,
1.0
)),
transforms
.
RandomHorizontalFlip
()
]
train_dataset
=
datasets
.
ImageFolder
(
traindir
,
transforms
.
Compose
(
train_tfms
))
return
PaddleDataLoader
(
train_dataset
,
batch_size
=
bs
)
return
PaddleDataLoader
(
train_dataset
).
reader
(
)
def
test
(
valdir
,
bs
,
sz
,
rect_val
=
False
):
if
rect_val
:
...
...
@@ -96,12 +86,12 @@ def test(valdir, bs, sz, rect_val=False):
ar_tfms
=
[
transforms
.
Resize
(
int
(
sz
*
1.14
)),
CropArTfm
(
idx2ar
,
sz
)]
val_dataset
=
ValDataset
(
valdir
,
transform
=
ar_tfms
)
return
PaddleDataLoader
(
val_dataset
,
concurrent
=
1
,
indices
=
idx_sorted
,
shuffle
=
False
,
is_distributed
=
False
)
return
PaddleDataLoader
(
val_dataset
,
concurrent
=
1
,
indices
=
idx_sorted
,
shuffle
=
False
).
reader
(
)
val_tfms
=
[
transforms
.
Resize
(
int
(
sz
*
1.14
)),
transforms
.
CenterCrop
(
sz
)]
val_dataset
=
datasets
.
ImageFolder
(
valdir
,
transforms
.
Compose
(
val_tfms
))
return
PaddleDataLoader
(
val_dataset
,
is_distributed
=
False
)
return
PaddleDataLoader
(
val_dataset
).
reader
(
)
class
ValDataset
(
datasets
.
ImageFolder
):
...
...
@@ -122,6 +112,7 @@ class ValDataset(datasets.ImageFolder):
return
sample
,
target
class
CropArTfm
(
object
):
def
__init__
(
self
,
idx2ar
,
target_size
):
self
.
idx2ar
,
self
.
target_size
=
idx2ar
,
target_size
...
...
@@ -134,7 +125,7 @@ class CropArTfm(object):
else
:
h
=
int
(
self
.
target_size
*
target_ar
)
size
=
(
self
.
target_size
,
h
//
8
*
8
)
return
transforms
.
functional
.
center_crop
(
img
,
size
)
return
t
orchvision
.
t
ransforms
.
functional
.
center_crop
(
img
,
size
)
def
sort_ar
(
valdir
):
...
...
@@ -166,5 +157,15 @@ def map_idx2ar(idx_ar_sorted, batch_size):
return
idx2ar
if
__name__
==
"__main__"
:
reader
=
test
(
"/work/fast_resnet_data"
,
64
,
128
).
reader
()
print
(
next
(
reader
()))
\ No newline at end of file
#ds, sampler = create_validation_set("/data/imagenet/validation", 128, 288, True, True)
#for item in sampler:
# for idx in item:
# ds[idx]
import
time
test_reader
=
test
(
valdir
=
"/data/imagenet/validation"
,
bs
=
64
,
sz
=
288
,
rect_val
=
True
)
start_ts
=
time
.
time
()
for
idx
,
data
in
enumerate
(
test_reader
()):
print
(
idx
,
data
[
0
],
data
[
0
].
shape
,
data
[
1
])
if
idx
==
2
:
break
\ No newline at end of file
fluid/PaddleCV/image_classification/fast_resnet/train.py
浏览文件 @
2bb4e4a6
...
...
@@ -19,9 +19,8 @@ import os
import
traceback
import
numpy
as
np
import
torch
import
torchvision_reader
import
torch
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -32,25 +31,9 @@ import sys
sys
.
path
.
append
(
".."
)
from
utility
import
add_arguments
,
print_arguments
import
functools
import
models
from
models.fast_resnet
import
FastResNet
,
lr_decay
import
utils
from
env
import
dist_env
import
reader
as
imagenet_reader
def
is_mp_mode
():
return
True
if
os
.
getenv
(
"FLAGS_selected_gpus"
)
else
False
def
nccl2_prepare
(
args
,
startup_prog
):
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
mode
=
"nccl2"
t
=
fluid
.
DistributeTranspiler
(
config
=
config
)
envs
=
args
.
dist_env
t
.
transpile
(
envs
[
"trainer_id"
],
trainers
=
','
.
join
(
envs
[
"trainer_endpoints"
]),
current_endpoint
=
envs
[
"current_endpoint"
],
startup_program
=
startup_prog
)
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
...
...
@@ -62,7 +45,7 @@ def parse_args():
add_arg
(
'model_save_dir'
,
str
,
"output"
,
"model save directory"
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'checkpoint'
,
str
,
None
,
"Whether to resume checkpoint."
)
add_arg
(
'lr'
,
float
,
0.1
,
"set learning rate."
)
add_arg
(
'lr'
,
float
,
1.0
,
"set learning rate."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"Set the learning rate decay strategy."
)
add_arg
(
'model'
,
str
,
"FastResNet"
,
"Set the network to use."
)
add_arg
(
'data_dir'
,
str
,
"./data/ILSVRC2012"
,
"The ImageNet dataset root dir."
)
...
...
@@ -89,83 +72,7 @@ def get_device_num():
[
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
return
device_num
def
linear_lr_decay
(
lr_values
,
epochs
,
bs_values
,
total_images
):
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
import
paddle.fluid.layers.tensor
as
tensor
import
math
with
paddle
.
fluid
.
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
lr
=
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
last_steps
=
0
for
idx
,
epoch_bound
in
enumerate
(
epochs
):
start_epoch
,
end_epoch
=
epoch_bound
linear_epoch
=
end_epoch
-
start_epoch
start_lr
,
end_lr
=
lr_values
[
idx
]
linear_lr
=
end_lr
-
start_lr
steps
=
last_steps
+
linear_epoch
*
total_images
/
bs_values
[
idx
]
+
1
with
switch
.
case
(
global_step
<
steps
):
decayed_lr
=
start_lr
+
linear_lr
*
((
global_step
-
last_steps
)
*
1.0
/
(
steps
-
last_steps
))
last_steps
=
steps
fluid
.
layers
.
tensor
.
assign
(
decayed_lr
,
lr
)
last_value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
lr_values
[
-
1
]))
with
switch
.
default
():
fluid
.
layers
.
tensor
.
assign
(
last_value_var
,
lr
)
return
lr
def
linear_lr_decay_by_epoch
(
lr_values
,
epochs
,
bs_values
,
total_images
):
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
import
paddle.fluid.layers.tensor
as
tensor
import
math
with
paddle
.
fluid
.
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
lr
=
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
last_steps
=
0
for
idx
,
epoch_bound
in
enumerate
(
epochs
):
start_epoch
,
end_epoch
=
epoch_bound
linear_epoch
=
end_epoch
-
start_epoch
start_lr
,
end_lr
=
lr_values
[
idx
]
linear_lr
=
end_lr
-
start_lr
for
epoch_step
in
xrange
(
linear_epoch
):
steps
=
last_steps
+
(
1
+
epoch_step
)
*
total_images
/
bs_values
[
idx
]
boundary_val
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
steps
),
force_cpu
=
True
)
decayed_lr
=
start_lr
+
epoch_step
*
linear_lr
*
1.0
/
linear_epoch
with
switch
.
case
(
global_step
<
boundary_val
):
value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decayed_lr
))
print
(
"steps: [%d], epoch : [%d], decayed_lr: [%f]"
%
(
steps
,
start_epoch
+
epoch_step
,
decayed_lr
))
fluid
.
layers
.
tensor
.
assign
(
value_var
,
lr
)
last_steps
=
steps
last_value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
lr_values
[
-
1
]))
with
switch
.
default
():
fluid
.
layers
.
tensor
.
assign
(
last_value_var
,
lr
)
return
lr
DEVICE_NUM
=
get_device_num
()
def
test_parallel
(
exe
,
test_args
,
args
,
test_prog
,
feeder
,
bs
):
acc_evaluators
=
[]
...
...
@@ -183,69 +90,51 @@ def test_parallel(exe, test_args, args, test_prog, feeder, bs):
for
i
,
e
in
enumerate
(
acc_evaluators
):
e
.
update
(
value
=
np
.
array
(
acc_rets
[
i
]),
weight
=
bs
)
num_samples
=
batch_id
*
bs
*
get_device_num
()
print_train_time
(
start_ts
,
time
.
time
(),
num_samples
,
"Test"
)
num_samples
=
batch_id
*
bs
*
DEVICE_NUM
print_train_time
(
start_ts
,
time
.
time
(),
num_samples
)
return
[
e
.
eval
()
for
e
in
acc_evaluators
]
def
test_single
(
exe
,
test_args
,
args
,
test_prog
,
feeder
,
bs
):
test_reader
=
test_args
[
3
]
to_fetch
=
[
v
.
name
for
v
in
test_args
[
2
]]
acc1
=
fluid
.
metrics
.
Accuracy
()
acc5
=
fluid
.
metrics
.
Accuracy
()
start_ts
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
test_reader
()):
batch_size
=
len
(
data
[
0
])
acc_rets
=
exe
.
run
(
test_prog
,
fetch_list
=
to_fetch
,
feed
=
feeder
.
feed
(
data
))
acc1
.
update
(
value
=
np
.
array
(
acc_rets
[
0
]),
weight
=
batch_size
)
acc5
.
update
(
value
=
np
.
array
(
acc_rets
[
1
]),
weight
=
batch_size
)
if
batch_id
%
30
==
0
:
print
(
"Test batch: [%d], acc_rets: [%s]"
%
(
batch_id
,
acc_rets
))
num_samples
=
batch_id
*
bs
print_train_time
(
start_ts
,
time
.
time
(),
num_samples
,
"Test"
)
return
np
.
mean
(
acc1
.
eval
()),
np
.
mean
(
acc5
.
eval
())
def
build_program
(
args
,
is_train
,
main_prog
,
startup_prog
,
py_reader_startup_prog
,
img_size
,
trn_dir
,
batch_size
,
min_scale
,
rect_val
):
dataloader
=
None
def
build_program
(
args
,
is_train
,
main_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
,
rect_val
=
False
):
dshape
=
[
3
,
sz
,
sz
]
class_dim
=
1000
if
is_train
:
dataloader
=
torchvision_reader
.
train
(
traindir
=
os
.
path
.
join
(
args
.
data_dir
,
trn_dir
,
"train"
),
bs
=
batch_size
if
is_mp_mode
()
else
batch_size
*
get_device_num
(),
sz
=
img_size
,
min_scale
=
min_scale
)
reader
=
torchvision_reader
.
train
(
traindir
=
"/data/imagenet/%strain"
%
trn_dir
,
sz
=
sz
,
min_scale
=
min_scale
)
else
:
dataloader
=
torchvision_reader
.
test
(
valdir
=
os
.
path
.
join
(
args
.
data_dir
,
trn_dir
,
"validation"
),
bs
=
batch_size
if
is_mp_mode
()
else
batch_size
*
get_device_num
(),
sz
=
img_size
,
rect_val
=
rect_val
)
dshape
=
[
3
,
img_size
,
img_size
]
class_dim
=
1000
reader
=
torchvision_reader
.
test
(
valdir
=
"/data/imagenet/%svalidation"
%
trn_dir
,
bs
=
bs
*
DEVICE_NUM
,
sz
=
sz
,
rect_val
=
rect_val
)
pyreader
=
None
batched_reader
=
None
model_name
=
args
.
model
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
assert
model_name
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
model
=
models
.
__dict__
[
model_name
]()
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
if
is_train
:
with
fluid
.
program_guard
(
main_prog
,
py_reader_startup_prog
):
with
fluid
.
unique_name
.
guard
():
pyreader
=
fluid
.
layers
.
py_reader
(
capacity
=
b
atch_size
if
is_mp_mode
()
else
batch_size
*
get_device_num
()
,
capacity
=
b
s
*
DEVICE_NUM
,
shapes
=
([
-
1
]
+
dshape
,
(
-
1
,
1
)),
dtypes
=
(
'uint8'
,
'int64'
),
name
=
"train_reader_"
+
str
(
img_size
)
if
is_train
else
"test_reader_"
+
str
(
img_size
),
name
=
"train_reader_"
+
str
(
sz
)
if
is_train
else
"test_reader_"
+
str
(
sz
),
use_double_buffer
=
True
)
input
,
label
=
fluid
.
layers
.
read_file
(
pyreader
)
pyreader
.
decorate_paddle_reader
(
paddle
.
batch
(
reader
,
batch_size
=
bs
))
else
:
input
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
244
,
244
],
dtype
=
"uint8"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
batched_reader
=
paddle
.
batch
(
reader
,
batch_size
=
bs
*
DEVICE_NUM
)
cast_img_type
=
"float16"
if
args
.
fp16
else
"float32"
cast
=
fluid
.
layers
.
cast
(
input
,
cast_img_type
)
img_mean
=
fluid
.
layers
.
create_global_var
([
3
,
1
,
1
],
0.0
,
cast_img_type
,
name
=
"img_mean"
,
persistable
=
True
)
img_std
=
fluid
.
layers
.
create_global_var
([
3
,
1
,
1
],
0.0
,
cast_img_type
,
name
=
"img_std"
,
persistable
=
True
)
#image = (image - (mean * 255.0)) / (std * 255.0)
#
image = (image - (mean * 255.0)) / (std * 255.0)
t1
=
fluid
.
layers
.
elementwise_sub
(
cast
,
img_mean
,
axis
=
1
)
t2
=
fluid
.
layers
.
elementwise_div
(
t1
,
img_std
,
axis
=
1
)
predict
=
model
.
net
(
t2
,
class_dim
=
class_dim
,
img_size
=
img_size
,
is_train
=
is_train
)
model
=
FastResNet
(
is_train
=
is_train
)
predict
=
model
.
net
(
t2
,
class_dim
=
class_dim
,
img_size
=
sz
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
predict
,
label
,
return_softmax
=
True
)
if
args
.
scale_loss
>
1
:
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
*
float
(
args
.
scale_loss
)
...
...
@@ -258,15 +147,19 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
# configure optimize
optimizer
=
None
if
is_train
:
total_images
=
args
.
total_images
lr
=
args
.
lr
epochs
=
[(
0
,
7
),
(
7
,
13
),
(
13
,
22
),
(
22
,
25
),
(
25
,
28
)]
bs_epoch
=
[
x
if
is_mp_mode
()
else
x
*
get_device_num
()
for
x
in
[
224
,
224
,
96
,
96
,
50
]]
lrs
=
[(
1.0
,
2.0
),
(
2.0
,
0.25
),
(
0.42857142857142855
,
0.04285714285714286
),
(
0.04285714285714286
,
0.004285714285714286
),
(
0.0022321428571428575
,
0.00022321428571428573
),
0.00022321428571428573
]
images_per_worker
=
args
.
total_images
/
get_device_num
()
if
is_mp_mode
()
else
args
.
total_images
bs_epoch
=
[
bs
*
DEVICE_NUM
for
bs
in
[
224
,
224
,
96
,
96
,
50
]]
bs_scale
=
[
bs
*
1.0
/
bs_epoch
[
0
]
for
bs
in
bs_epoch
]
lrs
=
[(
lr
,
lr
*
2
),
(
lr
*
2
,
lr
/
4
),
(
lr
*
bs_scale
[
2
],
lr
/
10
*
bs_scale
[
2
]),
(
lr
/
10
*
bs_scale
[
2
],
lr
/
100
*
bs_scale
[
2
]),
(
lr
/
100
*
bs_scale
[
4
],
lr
/
1000
*
bs_scale
[
4
]),
lr
/
1000
*
bs_scale
[
4
]]
boundaries
,
values
=
lr_decay
(
lrs
,
epochs
,
bs_epoch
,
total_images
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
linear_lr_decay_by_epoch
(
lrs
,
epochs
,
bs_epoch
,
images_per_worker
),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
),
momentum
=
0.9
)
#regularization=fluid.regularizer.L2Decay(1e-4))
if
args
.
fp16
:
params_grads
=
optimizer
.
backward
(
avg_cost
)
master_params_grads
=
utils
.
create_master_params_grads
(
...
...
@@ -276,41 +169,32 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
else
:
optimizer
.
minimize
(
avg_cost
)
if
args
.
memory_optimize
:
fluid
.
memory_optimize
(
main_prog
,
skip_grads
=
True
)
if
is_train
:
pyreader
.
decorate_paddle_reader
(
paddle
.
batch
(
dataloader
.
reader
(),
batch_size
=
batch_size
,
drop_last
=
True
))
else
:
batched_reader
=
paddle
.
batch
(
dataloader
.
reader
(),
batch_size
=
batch_size
if
is_mp_mode
()
else
batch_size
*
get_device_num
(),
drop_last
=
True
)
if
args
.
memory_optimize
:
fluid
.
memory_optimize
(
main_prog
,
skip_grads
=
True
)
return
avg_cost
,
optimizer
,
[
batch_acc1
,
batch_acc5
],
batched_reader
,
pyreader
,
py_reader_startup_prog
,
dataloader
batch_acc5
],
batched_reader
,
pyreader
,
py_reader_startup_prog
def
refresh_program
(
args
,
epoch
,
sz
,
trn_dir
,
bs
,
val_bs
,
need_update_start_prog
=
False
,
min_scale
=
0.08
,
rect_val
=
False
):
print
(
'
program changed
: epoch: [%d], image size: [%d], trn_dir: [%s], batch_size:[%d]'
%
(
epoch
,
sz
,
trn_dir
,
bs
))
print
(
'
refresh program
: epoch: [%d], image size: [%d], trn_dir: [%s], batch_size:[%d]'
%
(
epoch
,
sz
,
trn_dir
,
bs
))
train_prog
=
fluid
.
Program
()
test_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
py_reader_startup_prog
=
fluid
.
Program
()
num_trainers
=
args
.
dist_env
[
"num_trainers"
]
trainer_id
=
args
.
dist_env
[
"trainer_id"
]
train_args
=
build_program
(
args
,
True
,
train_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
,
False
)
test_args
=
build_program
(
args
,
False
,
test_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
val_bs
,
min_scale
,
rect_val
)
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
))
if
is_mp_mode
()
else
0
place
=
core
.
CUDAPlace
(
gpu_id
)
train_args
=
build_program
(
args
,
True
,
train_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
)
test_args
=
build_program
(
args
,
False
,
test_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
val_bs
,
min_scale
,
rect_val
=
rect_val
)
place
=
core
.
CUDAPlace
(
0
)
startup_exe
=
fluid
.
Executor
(
place
)
print
(
"execute py_reader startup program"
)
startup_exe
.
run
(
py_reader_startup_prog
)
if
need_update_start_prog
:
print
(
"execute startup program"
)
if
is_mp_mode
():
nccl2_prepare
(
args
,
startup_prog
)
startup_exe
.
run
(
startup_prog
)
conv2d_w_vars
=
[
var
for
var
in
startup_prog
.
global_block
().
vars
.
values
()
if
var
.
name
.
startswith
(
'conv2d_'
)]
for
var
in
conv2d_w_vars
:
torch_w
=
torch
.
empty
(
var
.
shape
)
#print("initialize %s, shape: %s, with kaiming normalization." % (var.name, var.shape))
kaiming_np
=
torch
.
nn
.
init
.
kaiming_normal_
(
torch_w
,
mode
=
'fan_out'
,
nonlinearity
=
'relu'
).
numpy
()
tensor
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
if
args
.
fp16
:
...
...
@@ -328,28 +212,24 @@ def refresh_program(args, epoch, sz, trn_dir, bs, val_bs, need_update_start_prog
else
:
var
.
get_tensor
().
set
(
np_tensor
,
place
)
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
args
.
num_threads
strategy
.
allow_op_delay
=
False
strategy
.
num_iteration_per_drop_scope
=
1
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
().
ReduceStrategy
.
AllReduce
avg_loss
=
train_args
[
0
]
train_exe
=
fluid
.
ParallelExecutor
(
True
,
avg_loss
.
name
,
main_program
=
train_prog
,
exec_strategy
=
strategy
,
build_strategy
=
build_strategy
,
num_trainers
=
num_trainers
,
trainer_id
=
trainer_id
)
build_strategy
=
build_strategy
)
test_exe
=
fluid
.
ParallelExecutor
(
True
,
main_program
=
test_prog
,
share_vars_from
=
train_exe
)
#return train_args, test_args, test_prog, train_exe, test_exe
return
train_args
,
test_args
,
test_prog
,
train_exe
,
test_exe
# NOTE: only need to benchmark using parallelexe
...
...
@@ -363,18 +243,17 @@ def train_parallel(args):
test_args
=
None
bs
=
224
val_bs
=
64
for
pass
_id
in
range
(
args
.
num_epochs
):
for
epoch
_id
in
range
(
args
.
num_epochs
):
# program changed
if
pass
_id
==
0
:
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
pass
_id
,
sz
=
128
,
trn_dir
=
"sz/160/"
,
bs
=
bs
,
val_bs
=
val_bs
,
need_update_start_prog
=
True
)
elif
pass
_id
==
13
:
#13
if
epoch
_id
==
0
:
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch
_id
,
sz
=
128
,
trn_dir
=
"sz/160/"
,
bs
=
bs
,
val_bs
=
val_bs
,
need_update_start_prog
=
True
)
elif
epoch
_id
==
13
:
#13
bs
=
96
val_bs
=
32
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
pass_id
,
sz
=
224
,
trn_dir
=
"sz/352/"
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
0.087
)
elif
pass_id
==
25
:
#25
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
224
,
trn_dir
=
"sz/352/"
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
0.087
)
elif
epoch_id
==
25
:
#25
bs
=
50
val_bs
=
4
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
pass
_id
,
sz
=
288
,
trn_dir
=
""
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
0.5
,
rect_val
=
True
)
val_bs
=
8
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch
_id
,
sz
=
288
,
trn_dir
=
""
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
0.5
,
rect_val
=
True
)
else
:
pass
...
...
@@ -382,17 +261,14 @@ def train_parallel(args):
num_samples
=
0
iters
=
0
start_time
=
time
.
time
()
train_dataloader
=
train_args
[
6
]
# Paddle DataLoader
train_dataloader
.
shuffle_seed
=
pass_id
+
1
train_args
[
4
].
start
()
# start pyreader
batch_time_start
=
time
.
time
()
samples_per_step
=
bs
if
is_mp_mode
()
else
bs
*
get_device_num
()
batch_start_time
=
time
.
time
()
while
True
:
fetch_list
=
[
avg_loss
.
name
]
acc_name_list
=
[
v
.
name
for
v
in
train_args
[
2
]]
fetch_list
.
extend
(
acc_name_list
)
fetch_list
.
append
(
"learning_rate"
)
if
iters
>
0
and
iters
%
args
.
log_period
==
0
:
if
iters
%
args
.
log_period
==
0
:
should_print
=
True
else
:
should_print
=
False
...
...
@@ -410,35 +286,36 @@ def train_parallel(args):
except
fluid
.
core
.
EnforceNotMet
as
ex
:
traceback
.
print_exc
()
exit
(
1
)
num_samples
+=
samples_per_step
num_samples
+=
bs
*
DEVICE_NUM
if
should_print
:
fetched_data
=
[
np
.
mean
(
np
.
array
(
d
))
for
d
in
fetch_ret
]
print
(
"
Pass
%d, batch %d, loss %s, accucacys: %s, learning_rate %s, py_reader queue_size: %d, avg batch time: %0.4f secs"
%
(
pass_id
,
iters
,
fetched_data
[
0
],
fetched_data
[
1
:
-
1
],
fetched_data
[
-
1
],
train_args
[
4
].
queue
.
size
(),
(
time
.
time
()
-
batch_time_start
)
*
1.0
/
args
.
log_period
))
batch_
time_start
=
time
.
time
()
print
(
"
Epoch
%d, batch %d, loss %s, accucacys: %s, learning_rate %s, py_reader queue_size: %d, avg batch time: %0.4f secs"
%
(
epoch_id
,
iters
,
fetched_data
[
0
],
fetched_data
[
1
:
-
1
],
fetched_data
[
-
1
],
train_args
[
4
].
queue
.
size
(),
(
time
.
time
()
-
batch_start_time
)
*
1.0
/
args
.
log_period
))
batch_
start_time
=
time
.
time
()
iters
+=
1
print_train_time
(
start_time
,
time
.
time
(),
num_samples
,
"Train"
)
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
feed_list
=
[
test_prog
.
global_block
().
var
(
varname
)
for
varname
in
(
"image"
,
"label"
)]
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
))
if
is_mp_mode
()
else
0
test_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
fluid
.
CUDAPlace
(
gpu_id
))
#test_ret = test_single(test_exe, test_args, args, test_prog, test_feeder, val_bs)
test_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
fluid
.
CUDAPlace
(
0
))
test_ret
=
test_parallel
(
test_exe
,
test_args
,
args
,
test_prog
,
test_feeder
,
val_bs
)
print
(
"
Pass
: %d, Test Accuracy: %s, Spend %.2f hours
\n
"
%
(
pass
_id
,
[
np
.
mean
(
np
.
array
(
v
))
for
v
in
test_ret
],
(
time
.
time
()
-
over_all_start
)
/
3600
))
print
(
"
Epoch
: %d, Test Accuracy: %s, Spend %.2f hours
\n
"
%
(
epoch
_id
,
[
np
.
mean
(
np
.
array
(
v
))
for
v
in
test_ret
],
(
time
.
time
()
-
over_all_start
)
/
3600
))
print
(
"total train time: "
,
time
.
time
()
-
over_all_start
)
def
print_train_time
(
start_time
,
end_time
,
num_samples
,
prefix_text
=
""
):
def
print_train_time
(
start_time
,
end_time
,
num_samples
):
train_elapsed
=
end_time
-
start_time
examples_per_sec
=
num_samples
/
train_elapsed
print
(
'
\n
%s
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
prefix_text
,
num_samples
,
train_elapsed
,
examples_per_sec
))
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
def
print_paddle_envs
():
print
(
'----------- Configuration envs -----------'
)
print
(
"DEVICE_NUM: %d"
%
DEVICE_NUM
)
for
k
in
os
.
environ
:
if
"PADDLE_"
in
k
:
print
"ENV %s:%s"
%
(
k
,
os
.
environ
[
k
])
...
...
@@ -447,7 +324,6 @@ def print_paddle_envs():
def
main
():
args
=
parse_args
()
args
.
dist_env
=
dist_env
()
print_arguments
(
args
)
print_paddle_envs
()
train_parallel
(
args
)
...
...
fluid/PaddleCV/image_classification/models/fast_resnet.py
浏览文件 @
2bb4e4a6
...
...
@@ -30,14 +30,12 @@ import paddle.fluid.core as core
import
paddle.fluid.profiler
as
profiler
import
utils
## visreader for imagenet
import
torchvision_reader
__all__
=
[
"FastResNet"
]
class
FastResNet
():
def
__init__
(
self
,
layers
=
50
):
def
__init__
(
self
,
layers
=
50
,
is_train
=
True
):
self
.
layers
=
layers
self
.
is_train
=
is_train
def
net
(
self
,
input
,
class_dim
=
1000
,
img_size
=
224
,
is_train
=
True
):
layers
=
self
.
layers
...
...
@@ -54,7 +52,7 @@ class FastResNet():
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
is_train
=
is_train
)
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
...
...
@@ -73,6 +71,7 @@ class FastResNet():
input
=
conv
,
pool_size
=
pool_size
,
pool_type
=
'avg'
,
global_pooling
=
True
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
0.01
),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
1e-4
)),
...
...
@@ -87,8 +86,7 @@ class FastResNet():
stride
=
1
,
groups
=
1
,
act
=
None
,
bn_init_value
=
1.0
,
is_train
=
True
):
bn_init_value
=
1.0
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
...
...
@@ -98,10 +96,8 @@ class FastResNet():
groups
=
groups
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
MSRAInitializer
(),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
1e-4
)))
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
is_test
=
not
is_train
,
param_attr
=
fluid
.
ParamAttr
(
regularizer
=
fluid
.
regularizer
.
L2Decay
(
1e-4
)))
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
is_test
=
not
self
.
is_train
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
bn_init_value
),
regularizer
=
None
))
...
...
@@ -129,3 +125,67 @@ class FastResNet():
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
lr_decay
(
lrs
,
epochs
,
bs
,
total_image
):
boundaries
=
[]
values
=
[]
for
idx
,
epoch
in
enumerate
(
epochs
):
step
=
total_image
//
bs
[
idx
]
if
step
*
bs
[
idx
]
<
total_image
:
step
+=
1
ratio
=
(
lrs
[
idx
][
1
]
-
lrs
[
idx
][
0
])
*
1.0
/
(
epoch
[
1
]
-
epoch
[
0
])
lr_base
=
lrs
[
idx
][
0
]
for
s
in
xrange
(
epoch
[
0
],
epoch
[
1
]):
if
boundaries
:
boundaries
.
append
(
boundaries
[
-
1
]
+
step
)
else
:
boundaries
=
[
step
]
lr
=
lr_base
+
ratio
*
(
s
-
epoch
[
0
])
values
.
append
(
lr
)
print
(
"epoch: [%d], steps: [%d], lr: [%f]"
%
(
s
,
boundaries
[
-
1
],
values
[
-
1
]))
values
.
append
(
lrs
[
-
1
])
print
(
"epoch: [%d:], steps: [%d:], lr:[%f]"
%
(
epochs
[
-
1
][
-
1
],
boundaries
[
-
1
],
values
[
-
1
]))
return
boundaries
,
values
def
linear_lr_decay_by_epoch
(
lr_values
,
epochs
,
bs_values
,
total_images
):
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
import
paddle.fluid.layers.tensor
as
tensor
import
math
with
paddle
.
fluid
.
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
lr
=
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
last_steps
=
0
for
idx
,
epoch_bound
in
enumerate
(
epochs
):
start_epoch
,
end_epoch
=
epoch_bound
linear_epoch
=
end_epoch
-
start_epoch
start_lr
,
end_lr
=
lr_values
[
idx
]
linear_lr
=
end_lr
-
start_lr
for
epoch_step
in
xrange
(
linear_epoch
):
steps
=
last_steps
+
(
1
+
epoch_step
)
*
total_images
/
bs_values
[
idx
]
+
1
boundary_val
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
steps
),
force_cpu
=
True
)
decayed_lr
=
start_lr
+
epoch_step
*
linear_lr
*
1.0
/
linear_epoch
with
switch
.
case
(
global_step
<
boundary_val
):
value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decayed_lr
))
print
(
"steps: [%d], epoch : [%d], decayed_lr: [%f]"
%
(
steps
,
start_epoch
+
epoch_step
,
decayed_lr
))
fluid
.
layers
.
tensor
.
assign
(
value_var
,
lr
)
last_steps
=
steps
last_value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
lr_values
[
-
1
]))
with
switch
.
default
():
fluid
.
layers
.
tensor
.
assign
(
last_value_var
,
lr
)
return
lr
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录