未验证 提交 25a24bb7 编写于 作者: J jiaozhenyu 提交者: GitHub

Merge pull request #1540 from jshower/develop

fix #1534
......@@ -38,12 +38,10 @@ def infer(model_path, batch_size, test_data_file, vocab_file, target_file,
for data in test_data():
word = to_lodtensor([x[0] for x in data], place)
mark = to_lodtensor([x[1] for x in data], place)
target = to_lodtensor([x[2] for x in data], place)
crf_decode = exe.run(
inference_program,
feed={"word": word,
"mark": mark,
"target": target},
"mark": mark},
fetch_list=fetch_targets,
return_numpy=False)
lod_info = (crf_decode[0].lod())[0]
......
......@@ -61,22 +61,21 @@ def main(train_data_file,
avg_cost, feature_out, word, mark, target = ner_net(
word_dict_len, label_dict_len, parallel)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
sgd_optimizer.minimize(avg_cost)
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
(precision, recall, f1_score, num_infer_chunks, num_label_chunks,
num_correct_chunks) = fluid.layers.chunk_eval(
input=crf_decode,
label=target,
chunk_scheme="IOB",
num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
num_correct_chunks) = fluid.layers.chunk_eval(
input=crf_decode,
label=target,
chunk_scheme="IOB",
num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
chunk_evaluator = fluid.metrics.ChunkEvaluator()
inference_program = fluid.default_main_program().clone(for_test=True)
test_fetch_list = [num_infer_chunks, num_label_chunks, num_correct_chunks]
sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
sgd_optimizer.minimize(avg_cost)
if "CE_MODE_X" not in os.environ:
train_reader = paddle.batch(
......@@ -135,7 +134,7 @@ def main(train_data_file,
" pass_f1_score:" + str(test_pass_f1_score))
save_dirname = os.path.join(model_save_dir, "params_pass_%d" % pass_id)
fluid.io.save_inference_model(save_dirname, ['word', 'mark', 'target'],
fluid.io.save_inference_model(save_dirname, ['word', 'mark'],
crf_decode, exe)
if "CE_MODE_X" in os.environ:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册