未验证 提交 15fc1624 编写于 作者: J jerrywgz 提交者: GitHub

refine README (#1664)

上级 a76dc125
...@@ -38,18 +38,6 @@ Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download ...@@ -38,18 +38,6 @@ Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download
## Training ## Training
After data preparation, one can start the training step by:
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model}
--data_dir=${path_to_data}
- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train.
- For more help on arguments:
python train.py --help
**download the pre-trained model:** This sample provides Resnet-50 pre-trained model which is converted from Caffe. The model fuses the parameters in batch normalization layer. One can download pre-trained model as: **download the pre-trained model:** This sample provides Resnet-50 pre-trained model which is converted from Caffe. The model fuses the parameters in batch normalization layer. One can download pre-trained model as:
sh ./pretrained/download.sh sh ./pretrained/download.sh
...@@ -72,6 +60,18 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed. ...@@ -72,6 +60,18 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed.
# not to install the COCO API into global site-packages # not to install the COCO API into global site-packages
python2 setup.py install --user python2 setup.py install --user
After data preparation, one can start the training step by:
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model}
--data_dir=${path_to_data}
- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train.
- For more help on arguments:
python train.py --help
**data reader introduction:** **data reader introduction:**
* Data reader is defined in `reader.py`. * Data reader is defined in `reader.py`.
......
...@@ -37,18 +37,6 @@ Faster RCNN 目标检测模型 ...@@ -37,18 +37,6 @@ Faster RCNN 目标检测模型
## 模型训练 ## 模型训练
数据准备完毕后,可以通过如下的方式启动训练:
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model}
--data_dir=${path_to_data}
- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 可选参数见:
python train.py --help
**下载预训练模型:** 本示例提供Resnet-50预训练模型,该模性转换自Caffe,并对批标准化层(Batch Normalization Layer)进行参数融合。采用如下命令下载预训练模型: **下载预训练模型:** 本示例提供Resnet-50预训练模型,该模性转换自Caffe,并对批标准化层(Batch Normalization Layer)进行参数融合。采用如下命令下载预训练模型:
sh ./pretrained/download.sh sh ./pretrained/download.sh
...@@ -71,6 +59,18 @@ Faster RCNN 目标检测模型 ...@@ -71,6 +59,18 @@ Faster RCNN 目标检测模型
# not to install the COCO API into global site-packages # not to install the COCO API into global site-packages
python2 setup.py install --user python2 setup.py install --user
数据准备完毕后,可以通过如下的方式启动训练:
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model}
--data_dir=${path_to_data}
- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 可选参数见:
python train.py --help
**数据读取器说明:** 数据读取器定义在reader.py中。所有图像将短边等比例缩放至`scales`,若长边大于`max_size`, 则再次将长边等比例缩放至`max_size`。在训练阶段,对图像采用水平翻转。支持将同一个batch内的图像padding为相同尺寸。 **数据读取器说明:** 数据读取器定义在reader.py中。所有图像将短边等比例缩放至`scales`,若长边大于`max_size`, 则再次将长边等比例缩放至`max_size`。在训练阶段,对图像采用水平翻转。支持将同一个batch内的图像padding为相同尺寸。
**模型设置:** **模型设置:**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册