From 15fc1624ca0af2757ae45fc69afd733ed462ad23 Mon Sep 17 00:00:00 2001 From: jerrywgz Date: Sun, 20 Jan 2019 22:59:16 +0800 Subject: [PATCH] refine README (#1664) --- fluid/PaddleCV/faster_rcnn/README.md | 24 ++++++++++++------------ fluid/PaddleCV/faster_rcnn/README_cn.md | 24 ++++++++++++------------ 2 files changed, 24 insertions(+), 24 deletions(-) diff --git a/fluid/PaddleCV/faster_rcnn/README.md b/fluid/PaddleCV/faster_rcnn/README.md index 24e9fffc..0a5f68c3 100644 --- a/fluid/PaddleCV/faster_rcnn/README.md +++ b/fluid/PaddleCV/faster_rcnn/README.md @@ -38,18 +38,6 @@ Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download ## Training -After data preparation, one can start the training step by: - - python train.py \ - --model_save_dir=output/ \ - --pretrained_model=${path_to_pretrain_model} - --data_dir=${path_to_data} - -- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train. -- For more help on arguments: - - python train.py --help - **download the pre-trained model:** This sample provides Resnet-50 pre-trained model which is converted from Caffe. The model fuses the parameters in batch normalization layer. One can download pre-trained model as: sh ./pretrained/download.sh @@ -72,6 +60,18 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed. # not to install the COCO API into global site-packages python2 setup.py install --user +After data preparation, one can start the training step by: + + python train.py \ + --model_save_dir=output/ \ + --pretrained_model=${path_to_pretrain_model} + --data_dir=${path_to_data} + +- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train. +- For more help on arguments: + + python train.py --help + **data reader introduction:** * Data reader is defined in `reader.py`. diff --git a/fluid/PaddleCV/faster_rcnn/README_cn.md b/fluid/PaddleCV/faster_rcnn/README_cn.md index 8b922f89..29adfcfd 100644 --- a/fluid/PaddleCV/faster_rcnn/README_cn.md +++ b/fluid/PaddleCV/faster_rcnn/README_cn.md @@ -37,18 +37,6 @@ Faster RCNN 目标检测模型 ## 模型训练 -数据准备完毕后,可以通过如下的方式启动训练: - - python train.py \ - --model_save_dir=output/ \ - --pretrained_model=${path_to_pretrain_model} - --data_dir=${path_to_data} - -- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。 -- 可选参数见: - - python train.py --help - **下载预训练模型:** 本示例提供Resnet-50预训练模型,该模性转换自Caffe,并对批标准化层(Batch Normalization Layer)进行参数融合。采用如下命令下载预训练模型: sh ./pretrained/download.sh @@ -71,6 +59,18 @@ Faster RCNN 目标检测模型 # not to install the COCO API into global site-packages python2 setup.py install --user +数据准备完毕后,可以通过如下的方式启动训练: + + python train.py \ + --model_save_dir=output/ \ + --pretrained_model=${path_to_pretrain_model} + --data_dir=${path_to_data} + +- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。 +- 可选参数见: + + python train.py --help + **数据读取器说明:** 数据读取器定义在reader.py中。所有图像将短边等比例缩放至`scales`,若长边大于`max_size`, 则再次将长边等比例缩放至`max_size`。在训练阶段,对图像采用水平翻转。支持将同一个batch内的图像padding为相同尺寸。 **模型设置:** -- GitLab