Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
096fa39f
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
096fa39f
编写于
9月 01, 2020
作者:
Q
qingqing01
提交者:
GitHub
9月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix logging in transformer dygraph (#4827)
上级
f9f0d30e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
13 addition
and
9 deletion
+13
-9
dygraph/transformer/train.py
dygraph/transformer/train.py
+13
-9
未找到文件。
dygraph/transformer/train.py
浏览文件 @
096fa39f
...
@@ -29,6 +29,10 @@ from utils.check import check_gpu, check_version
...
@@ -29,6 +29,10 @@ from utils.check import check_gpu, check_version
import
reader
import
reader
from
model
import
Transformer
,
CrossEntropyCriterion
,
NoamDecay
from
model
import
Transformer
,
CrossEntropyCriterion
,
NoamDecay
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
do_train
(
args
):
def
do_train
(
args
):
if
args
.
use_cuda
:
if
args
.
use_cuda
:
...
@@ -180,7 +184,7 @@ def do_train(args):
...
@@ -180,7 +184,7 @@ def do_train(args):
total_avg_cost
=
avg_cost
.
numpy
()
*
trainer_count
total_avg_cost
=
avg_cost
.
numpy
()
*
trainer_count
if
step_idx
==
0
:
if
step_idx
==
0
:
logg
ing
.
info
(
logg
er
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
...
@@ -189,7 +193,7 @@ def do_train(args):
...
@@ -189,7 +193,7 @@ def do_train(args):
else
:
else
:
train_avg_batch_cost
=
args
.
print_step
/
(
train_avg_batch_cost
=
args
.
print_step
/
(
time
.
time
()
-
batch_start
)
time
.
time
()
-
batch_start
)
logg
ing
.
info
(
logg
er
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, avg_speed: %.2f step/s"
"normalized loss: %f, ppl: %f, avg_speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
...
@@ -216,11 +220,11 @@ def do_train(args):
...
@@ -216,11 +220,11 @@ def do_train(args):
total_sum_cost
+=
sum_cost
.
numpy
()
total_sum_cost
+=
sum_cost
.
numpy
()
total_token_num
+=
token_num
.
numpy
()
total_token_num
+=
token_num
.
numpy
()
total_avg_cost
=
total_sum_cost
/
total_token_num
total_avg_cost
=
total_sum_cost
/
total_token_num
logg
ing
.
info
(
"validation, step_idx: %d, avg loss: %f, "
logg
er
.
info
(
"validation, step_idx: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
total_avg_cost
,
(
step_idx
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
transformer
.
train
()
transformer
.
train
()
if
args
.
save_model
and
(
if
args
.
save_model
and
(
...
@@ -242,8 +246,8 @@ def do_train(args):
...
@@ -242,8 +246,8 @@ def do_train(args):
train_epoch_cost
=
time
.
time
()
-
epoch_start
train_epoch_cost
=
time
.
time
()
-
epoch_start
ce_time
.
append
(
train_epoch_cost
)
ce_time
.
append
(
train_epoch_cost
)
logg
ing
.
info
(
"train epoch: %d, epoch_cost: %.5f s"
%
logg
er
.
info
(
"train epoch: %d, epoch_cost: %.5f s"
%
(
pass_id
,
train_epoch_cost
))
(
pass_id
,
train_epoch_cost
))
if
args
.
save_model
:
if
args
.
save_model
:
model_dir
=
os
.
path
.
join
(
args
.
save_model
,
"step_final"
)
model_dir
=
os
.
path
.
join
(
args
.
save_model
,
"step_final"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录