diff --git a/dygraph/transformer/train.py b/dygraph/transformer/train.py index 109de2625a5771219e5e5dbd44621ff87ef43a33..a80455ab5a3ba7470c6768caa2e7333074785913 100644 --- a/dygraph/transformer/train.py +++ b/dygraph/transformer/train.py @@ -29,6 +29,10 @@ from utils.check import check_gpu, check_version import reader from model import Transformer, CrossEntropyCriterion, NoamDecay +FORMAT = '%(asctime)s-%(levelname)s: %(message)s' +logging.basicConfig(level=logging.INFO, format=FORMAT) +logger = logging.getLogger(__name__) + def do_train(args): if args.use_cuda: @@ -180,7 +184,7 @@ def do_train(args): total_avg_cost = avg_cost.numpy() * trainer_count if step_idx == 0: - logging.info( + logger.info( "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, " "normalized loss: %f, ppl: %f" % (step_idx, pass_id, batch_id, total_avg_cost, @@ -189,7 +193,7 @@ def do_train(args): else: train_avg_batch_cost = args.print_step / ( time.time() - batch_start) - logging.info( + logger.info( "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, " "normalized loss: %f, ppl: %f, avg_speed: %.2f step/s" % (step_idx, pass_id, batch_id, total_avg_cost, @@ -216,11 +220,11 @@ def do_train(args): total_sum_cost += sum_cost.numpy() total_token_num += token_num.numpy() total_avg_cost = total_sum_cost / total_token_num - logging.info("validation, step_idx: %d, avg loss: %f, " - "normalized loss: %f, ppl: %f" % - (step_idx, total_avg_cost, - total_avg_cost - loss_normalizer, - np.exp([min(total_avg_cost, 100)]))) + logger.info("validation, step_idx: %d, avg loss: %f, " + "normalized loss: %f, ppl: %f" % + (step_idx, total_avg_cost, + total_avg_cost - loss_normalizer, + np.exp([min(total_avg_cost, 100)]))) transformer.train() if args.save_model and ( @@ -242,8 +246,8 @@ def do_train(args): train_epoch_cost = time.time() - epoch_start ce_time.append(train_epoch_cost) - logging.info("train epoch: %d, epoch_cost: %.5f s" % - (pass_id, train_epoch_cost)) + logger.info("train epoch: %d, epoch_cost: %.5f s" % + (pass_id, train_epoch_cost)) if args.save_model: model_dir = os.path.join(args.save_model, "step_final")