train.py 7.5 KB
Newer Older
1
import os
2
import numpy as np
Y
ying 已提交
3

4
import paddle.v2 as paddle
L
Luo Tao 已提交
5
import paddle.fluid as fluid
Y
ying 已提交
6

7
from model import transformer, position_encoding_init
8
from optim import LearningRateScheduler
9 10
from config import TrainTaskConfig, ModelHyperParams, pos_enc_param_names, \
        encoder_input_data_names, decoder_input_data_names, label_data_names
11 12


13 14 15 16 17 18 19
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   return_pos=True,
                   return_attn_bias=True,
                   return_max_len=True):
20 21
    """
    Pad the instances to the max sequence length in batch, and generate the
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if return_pos:
        inst_pos = np.array([[
            pos_i + 1 if w_i != pad_idx else 0 for pos_i, w_i in enumerate(inst)
        ] for inst in inst_data])

        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
                        max_length, n_head):
    """
    Put all padded data needed by training into a dict.
62
    """
63 64 65 66
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
67 68
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
69 70
    lbl_word = pad_batch_data([inst[2] for inst in insts], trg_pad_idx, n_head,
                              False, False, False, False)
71
    lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
72 73 74 75 76
    input_dict = dict(
        zip(input_data_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
            trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
        ]))
77 78 79 80
    return input_dict


def main():
81 82 83
    place = fluid.CUDAPlace(0) if TrainTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

84
    cost, predict = transformer(
Y
ying 已提交
85 86 87 88 89 90 91
        ModelHyperParams.src_vocab_size + 1,
        ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer, ModelHyperParams.n_head,
        ModelHyperParams.d_key, ModelHyperParams.d_value,
        ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
        ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)
92

93 94 95
    lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                         TrainTaskConfig.warmup_steps, place,
                                         TrainTaskConfig.learning_rate)
96
    optimizer = fluid.optimizer.Adam(
97
        learning_rate=lr_scheduler.learning_rate,
Y
ying 已提交
98 99 100
        beta1=TrainTaskConfig.beta1,
        beta2=TrainTaskConfig.beta2,
        epsilon=TrainTaskConfig.eps)
101
    optimizer.minimize(cost)
102 103 104

    train_data = paddle.batch(
        paddle.reader.shuffle(
Y
ying 已提交
105 106
            paddle.dataset.wmt16.train(ModelHyperParams.src_vocab_size,
                                       ModelHyperParams.trg_vocab_size),
G
guosheng 已提交
107
            buf_size=100000),
Y
ying 已提交
108
        batch_size=TrainTaskConfig.batch_size)
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    # Program to do validation.
    test_program = fluid.default_main_program().clone()
    with fluid.program_guard(test_program):
        test_program = fluid.io.get_inference_program([cost])
    val_data = paddle.batch(
        paddle.dataset.wmt16.validation(ModelHyperParams.src_vocab_size,
                                        ModelHyperParams.trg_vocab_size),
        batch_size=TrainTaskConfig.batch_size)

    def test(exe):
        test_costs = []
        for batch_id, data in enumerate(val_data()):
            if len(data) != TrainTaskConfig.batch_size:
                continue
            data_input = prepare_batch_input(
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
                ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
                ModelHyperParams.n_head)
            test_cost = exe.run(test_program,
                                feed=data_input,
                                fetch_list=[cost])[0]
            test_costs.append(test_cost)
        return np.mean(test_costs)

135 136 137 138 139 140
    # Initialize the parameters.
    exe.run(fluid.framework.default_startup_program())
    for pos_enc_param_name in pos_enc_param_names:
        pos_enc_param = fluid.global_scope().find_var(
            pos_enc_param_name).get_tensor()
        pos_enc_param.set(
Y
ying 已提交
141 142 143 144 145
            position_encoding_init(ModelHyperParams.max_length + 1,
                                   ModelHyperParams.d_model), place)

    for pass_id in xrange(TrainTaskConfig.pass_num):
        for batch_id, data in enumerate(train_data()):
146 147 148 149
            # The current program desc is coupled with batch_size, thus all
            # mini-batches must have the same number of instances currently.
            if len(data) != TrainTaskConfig.batch_size:
                continue
Y
ying 已提交
150
            data_input = prepare_batch_input(
151 152
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
Y
ying 已提交
153
                ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
154
                ModelHyperParams.n_head)
155
            lr_scheduler.update_learning_rate(data_input)
156 157
            outs = exe.run(fluid.framework.default_main_program(),
                           feed=data_input,
158 159
                           fetch_list=[cost])
            cost_val = np.array(outs[0])
Y
ying 已提交
160
            print("pass_id = " + str(pass_id) + " batch = " + str(batch_id) +
G
guosheng 已提交
161
                  " cost = " + str(cost_val))
162 163 164 165 166 167 168 169
        # Validate and save the model for inference.
        val_cost = test(exe)
        print("pass_id = " + str(pass_id) + " val_cost = " + str(val_cost))
        fluid.io.save_inference_model(
            os.path.join(TrainTaskConfig.model_dir,
                         "pass_" + str(pass_id) + ".infer.model"),
            encoder_input_data_names + decoder_input_data_names[:-1],
            [predict], exe)
170 171 172 173


if __name__ == "__main__":
    main()