run_glue_pp.py 13.3 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import itertools
import os
import random
import time
from functools import partial

import numpy as np

import paddle
from paddle.io import DataLoader

from paddlenlp.datasets.dataset import *
from paddlenlp.datasets.glue import *
from paddlenlp.data import *
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.transformers.model_bert import *
from paddlenlp.transformers.tokenizer_bert import BertTokenizer
34
from paddlenlp.transformers import LinearDecayWithWarmup
Z
Zeyu Chen 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

TASK_CLASSES = {
    "qnli": (GlueQNLI, paddle.metric.Accuracy),  # (dataset, metric)
    "sst-2": (GlueSST2, paddle.metric.Accuracy),
}

MODEL_CLASSES = {"bert": (BertForSequenceClassification, BertTokenizer), }


def parse_args():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(TASK_CLASSES.keys()), )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()), )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
            ], [])), )

    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.", )

    parser.add_argument(
        "--batch_size",
        default=8,
        type=int,
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-8,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs",
        default=3,
        type=int,
        help="Total number of training epochs to perform.", )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")

    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument(
        "--eager_run", type=eval, default=True, help="Use dygraph mode.")
    parser.add_argument(
        "--n_gpu",
        type=int,
        default=1,
        help="number of gpus to use, 0 for cpu.")

    parser.add_argument(
        "--params_pd_path", type=str, default=None, help="params pd path")

    args = parser.parse_args()
    return args


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    paddle.seed(args.seed)


def evaluate(model, loss_fct, metric, data_loader):
    model.eval()
    metric.reset()
    # losses = []
    for batch in data_loader:
        input_ids, segment_ids, labels = batch
        logits = model(input_ids, segment_ids)
        loss = loss_fct(logits, labels)
        # losses.append(loss)
        correct = metric.compute(logits, labels)
        metric.update(correct)
        accu = metric.accumulate()
    print("eval loss: %f, accu: %f" % (loss.numpy(), accu))
    model.train()


def convert_example(example,
                    tokenizer,
                    label_list,
                    max_seq_length=512,
                    is_test=False):
    """convert a glue example into necessary features"""

    def _truncate_seqs(seqs, max_seq_length):
        if len(seqs) == 1:  # single sentence
            # Account for [CLS] and [SEP] with "- 2"
            seqs[0] = seqs[0][0:(max_seq_length - 2)]
        else:  # sentence pair
            # Account for [CLS], [SEP], [SEP] with "- 3"
            tokens_a, tokens_b = seqs
            max_seq_length -= 3
            while True:  # truncate with longest_first strategy
                total_length = len(tokens_a) + len(tokens_b)
                if total_length <= max_seq_length:
                    break
                if len(tokens_a) > len(tokens_b):
                    tokens_a.pop()
                else:
                    tokens_b.pop()
        return seqs

    def _concat_seqs(seqs, separators, seq_mask=0, separator_mask=1):
        concat = sum((seq + sep for sep, seq in zip(separators, seqs)), [])
        segment_ids = sum(
            ([i] * (len(seq) + len(sep))
             for i, (sep, seq) in enumerate(zip(separators, seqs))), [])
        if isinstance(seq_mask, int):
            seq_mask = [[seq_mask] * len(seq) for seq in seqs]
        if isinstance(separator_mask, int):
            separator_mask = [[separator_mask] * len(sep) for sep in separators]
        p_mask = sum((s_mask + mask
                      for sep, seq, s_mask, mask in zip(
                          separators, seqs, seq_mask, separator_mask)), [])
        return concat, segment_ids, p_mask

    if not is_test:
        # `label_list == None` is for regression task
        label_dtype = "int64" if label_list else "float32"
        # get the label
        label = example[-1]
        example = example[:-1]
        #create label maps if classification task
        if label_list:
            label_map = {}
            for (i, l) in enumerate(label_list):
                label_map[l] = i
            label = label_map[label]
        label = np.array([label], dtype=label_dtype)

    # tokenize raw text
    tokens_raw = [tokenizer(l) for l in example]
    # truncate to the truncate_length,
    tokens_trun = _truncate_seqs(tokens_raw, max_seq_length)
    # concate the sequences with special tokens
    tokens_trun[0] = [tokenizer.cls_token] + tokens_trun[0]
    tokens, segment_ids, _ = _concat_seqs(tokens_trun, [[tokenizer.sep_token]] *
                                          len(tokens_trun))
    # convert the token to ids
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    valid_length = len(input_ids)
    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    # input_mask = [1] * len(input_ids)
    if not is_test:
        return input_ids, segment_ids, valid_length, label
    else:
        return input_ids, segment_ids, valid_length


def do_train(args):
    paddle.enable_static() if not args.eager_run else None
    paddle.set_device("gpu" if args.n_gpu else "cpu")
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)

    args.task_name = args.task_name.lower()
    dataset_class, metric_class = TASK_CLASSES[args.task_name]
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    train_dataset, dev_dataset = dataset_class.get_datasets(["train", "dev"])
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    trans_func = partial(
        convert_example,
        tokenizer=tokenizer,
        label_list=train_dataset.get_labels(),
        max_seq_length=args.max_seq_length)
    train_dataset = train_dataset.apply(trans_func, lazy=True)
    # train_batch_sampler = SamplerHelper(train_dataset).shuffle().batch(
    #     batch_size=args.batch_size).shard()
    train_batch_sampler = paddle.io.DistributedBatchSampler(
        # train_dataset, batch_size=args.batch_size, shuffle=True)
        train_dataset,
        batch_size=args.batch_size,
        shuffle=False)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),  # input
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),  # segment
        Stack(),  # length
        Stack(dtype="int64" if train_dataset.get_labels() else "float32")  # label
    ): [data for i, data in enumerate(fn(samples)) if i != 2]
    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_sampler=train_batch_sampler,
        collate_fn=batchify_fn,
        num_workers=0,
        return_list=True)
    dev_dataset = dev_dataset.apply(trans_func, lazy=True)
    # dev_batch_sampler = SamplerHelper(dev_dataset).batch(
    #     batch_size=args.batch_size)
    dev_batch_sampler = paddle.io.BatchSampler(
        dev_dataset, batch_size=args.batch_size, shuffle=False)
    dev_data_loader = DataLoader(
        dataset=dev_dataset,
        batch_sampler=dev_batch_sampler,
        collate_fn=batchify_fn,
        num_workers=0,
        return_list=True)

    # model = model_class.from_pretrained(
    #     args.model_name_or_path,) num_classes=len(train_dataset.get_labels()))
    model = BertForPreTraining(
        BertModel(**model_class.pretrained_init_configuration[
            args.model_name_or_path]))
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

311 312 313 314 315
    num_training_steps = args.max_steps if args.max_steps > 0 else len(
        train_data_loader) * args.num_train_epochs

    lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
                                         args.warmup_steps)
Z
Zeyu Chen 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])

    loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels(
    ) else paddle.nn.loss.MSELoss()

    metric = metric_class()

    ### TODO: use hapi
    # trainer = paddle.hapi.Model(model)
    # trainer.prepare(optimizer, loss_fct, paddle.metric.Accuracy())
    # trainer.fit(train_data_loader,
    #             dev_data_loader,
    #             log_freq=args.logging_steps,
    #             epochs=args.num_train_epochs,
    #             save_dir=args.output_dir)

    model.eval()
    param_names = list(model.state_dict().keys())
    import pickle
    with open(args.params_pd_path, "rb") as f:
        np_params = pickle.load(f)
    model.set_state_dict(dict(zip(param_names, np_params)))
    paddle.save(model.state_dict(), "%s.pdparams" % args.model_name_or_path)
    for data in train_data_loader():
        print(model(*data[:-1]))
        exit(0)

    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        for step, batch in enumerate(train_data_loader):
            input_ids, segment_ids, labels = batch
            logits = model(input_ids, segment_ids)
            loss = loss_fct(logits, labels)
            if global_step % args.logging_steps == 0:
                print(
                    "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss,
                       args.logging_steps / (time.time() - tic_train)))
                tic_train = time.time()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
368
            optimizer.clear_grad()
Z
Zeyu Chen 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
            if global_step % args.save_steps == 0:
                evaluate(model, loss_fct, metric, dev_data_loader)
                if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0:
                    paddle.save(model.state_dict(),
                                os.path.join(args.output_dir,
                                             "model_%d.pdparams" % global_step))
            global_step += 1


if __name__ == "__main__":
    args = parse_args()
    if args.n_gpu > 1:
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu)
    else:
        do_train(args)