# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import itertools import os import random import time from functools import partial import numpy as np import paddle from paddle.io import DataLoader from paddlenlp.datasets.dataset import * from paddlenlp.datasets.glue import * from paddlenlp.data import * from paddlenlp.data.sampler import SamplerHelper from paddlenlp.transformers.model_bert import * from paddlenlp.transformers.tokenizer_bert import BertTokenizer from paddlenlp.transformers import LinearDecayWithWarmup TASK_CLASSES = { "qnli": (GlueQNLI, paddle.metric.Accuracy), # (dataset, metric) "sst-2": (GlueSST2, paddle.metric.Accuracy), } MODEL_CLASSES = {"bert": (BertForSequenceClassification, BertTokenizer), } def parse_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(TASK_CLASSES.keys()), ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--eager_run", type=eval, default=True, help="Use dygraph mode.") parser.add_argument( "--n_gpu", type=int, default=1, help="number of gpus to use, 0 for cpu.") parser.add_argument( "--params_pd_path", type=str, default=None, help="params pd path") args = parser.parse_args() return args def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) paddle.seed(args.seed) def evaluate(model, loss_fct, metric, data_loader): model.eval() metric.reset() # losses = [] for batch in data_loader: input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) # losses.append(loss) correct = metric.compute(logits, labels) metric.update(correct) accu = metric.accumulate() print("eval loss: %f, accu: %f" % (loss.numpy(), accu)) model.train() def convert_example(example, tokenizer, label_list, max_seq_length=512, is_test=False): """convert a glue example into necessary features""" def _truncate_seqs(seqs, max_seq_length): if len(seqs) == 1: # single sentence # Account for [CLS] and [SEP] with "- 2" seqs[0] = seqs[0][0:(max_seq_length - 2)] else: # sentence pair # Account for [CLS], [SEP], [SEP] with "- 3" tokens_a, tokens_b = seqs max_seq_length -= 3 while True: # truncate with longest_first strategy total_length = len(tokens_a) + len(tokens_b) if total_length <= max_seq_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() return seqs def _concat_seqs(seqs, separators, seq_mask=0, separator_mask=1): concat = sum((seq + sep for sep, seq in zip(separators, seqs)), []) segment_ids = sum( ([i] * (len(seq) + len(sep)) for i, (sep, seq) in enumerate(zip(separators, seqs))), []) if isinstance(seq_mask, int): seq_mask = [[seq_mask] * len(seq) for seq in seqs] if isinstance(separator_mask, int): separator_mask = [[separator_mask] * len(sep) for sep in separators] p_mask = sum((s_mask + mask for sep, seq, s_mask, mask in zip( separators, seqs, seq_mask, separator_mask)), []) return concat, segment_ids, p_mask if not is_test: # `label_list == None` is for regression task label_dtype = "int64" if label_list else "float32" # get the label label = example[-1] example = example[:-1] #create label maps if classification task if label_list: label_map = {} for (i, l) in enumerate(label_list): label_map[l] = i label = label_map[label] label = np.array([label], dtype=label_dtype) # tokenize raw text tokens_raw = [tokenizer(l) for l in example] # truncate to the truncate_length, tokens_trun = _truncate_seqs(tokens_raw, max_seq_length) # concate the sequences with special tokens tokens_trun[0] = [tokenizer.cls_token] + tokens_trun[0] tokens, segment_ids, _ = _concat_seqs(tokens_trun, [[tokenizer.sep_token]] * len(tokens_trun)) # convert the token to ids input_ids = tokenizer.convert_tokens_to_ids(tokens) valid_length = len(input_ids) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. # input_mask = [1] * len(input_ids) if not is_test: return input_ids, segment_ids, valid_length, label else: return input_ids, segment_ids, valid_length def do_train(args): paddle.enable_static() if not args.eager_run else None paddle.set_device("gpu" if args.n_gpu else "cpu") if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() dataset_class, metric_class = TASK_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_dataset, dev_dataset = dataset_class.get_datasets(["train", "dev"]) tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial( convert_example, tokenizer=tokenizer, label_list=train_dataset.get_labels(), max_seq_length=args.max_seq_length) train_dataset = train_dataset.apply(trans_func, lazy=True) # train_batch_sampler = SamplerHelper(train_dataset).shuffle().batch( # batch_size=args.batch_size).shard() train_batch_sampler = paddle.io.DistributedBatchSampler( # train_dataset, batch_size=args.batch_size, shuffle=True) train_dataset, batch_size=args.batch_size, shuffle=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # input Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # segment Stack(), # length Stack(dtype="int64" if train_dataset.get_labels() else "float32") # label ): [data for i, data in enumerate(fn(samples)) if i != 2] train_data_loader = DataLoader( dataset=train_dataset, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_dataset = dev_dataset.apply(trans_func, lazy=True) # dev_batch_sampler = SamplerHelper(dev_dataset).batch( # batch_size=args.batch_size) dev_batch_sampler = paddle.io.BatchSampler( dev_dataset, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader( dataset=dev_dataset, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) # model = model_class.from_pretrained( # args.model_name_or_path,) num_classes=len(train_dataset.get_labels())) model = BertForPreTraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels( ) else paddle.nn.loss.MSELoss() metric = metric_class() ### TODO: use hapi # trainer = paddle.hapi.Model(model) # trainer.prepare(optimizer, loss_fct, paddle.metric.Accuracy()) # trainer.fit(train_data_loader, # dev_data_loader, # log_freq=args.logging_steps, # epochs=args.num_train_epochs, # save_dir=args.output_dir) model.eval() param_names = list(model.state_dict().keys()) import pickle with open(args.params_pd_path, "rb") as f: np_params = pickle.load(f) model.set_state_dict(dict(zip(param_names, np_params))) paddle.save(model.state_dict(), "%s.pdparams" % args.model_name_or_path) for data in train_data_loader(): print(model(*data[:-1])) exit(0) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) if global_step % args.logging_steps == 0: print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s" % (global_step, epoch, step, loss, args.logging_steps / (time.time() - tic_train))) tic_train = time.time() loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.save_steps == 0: evaluate(model, loss_fct, metric, dev_data_loader) if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0: paddle.save(model.state_dict(), os.path.join(args.output_dir, "model_%d.pdparams" % global_step)) global_step += 1 if __name__ == "__main__": args = parse_args() if args.n_gpu > 1: paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu) else: do_train(args)