run_pretrain.py 16.1 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import itertools
import logging
import os
import random
import time
import h5py
G
Guo Sheng 已提交
23
import distutils.util
G
Guo Sheng 已提交
24 25 26 27 28 29 30 31 32 33 34
from functools import partial
from concurrent.futures import ThreadPoolExecutor

import numpy as np

import paddle
import paddle.distributed as dist
from paddle.io import DataLoader, Dataset

from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import BertForPretraining, BertModel, BertPretrainingCriterion
35 36
from paddlenlp.transformers import ErnieForPretraining, ErnieModel, ErniePretrainingCriterion
from paddlenlp.transformers import BertTokenizer, ErnieTokenizer
37
from paddlenlp.transformers import LinearDecayWithWarmup
G
Guo Sheng 已提交
38 39 40 41 42 43 44

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

MODEL_CLASSES = {
    "bert": (BertForPretraining, BertTokenizer),
45
    "ernie": (ErnieForPretraining, ErnieTokenizer)
G
Guo Sheng 已提交
46 47 48 49 50 51 52 53 54 55 56
}


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
57
        ", ".join(MODEL_CLASSES.keys()), )
G
Guo Sheng 已提交
58 59 60 61 62 63 64 65 66 67
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
68
            ], [])), )
G
Guo Sheng 已提交
69 70 71 72 73
    parser.add_argument(
        "--input_dir",
        default=None,
        type=str,
        required=True,
74
        help="The input directory where the data will be read from.", )
G
Guo Sheng 已提交
75 76 77 78 79
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
80
        help="The output directory where the model predictions and checkpoints will be written.",
G
Guo Sheng 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    )

    parser.add_argument(
        "--max_predictions_per_seq",
        default=80,
        type=int,
        help="The maximum total of masked tokens in input sequence")

    parser.add_argument(
        "--batch_size",
        default=8,
        type=int,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-8,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
G
Guo Sheng 已提交
111 112 113 114
    parser.add_argument(
        "--num_train_epochs",
        default=3,
        type=int,
115
        help="Total number of training epochs to perform.", )
G
Guo Sheng 已提交
116 117 118 119
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
120
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
G
Guo Sheng 已提交
121
    )
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")

    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument(
        "--n_cards",
        default=1,
        type=int,
        help="Number cards for the training, only support multi cards in the gpu."
    )
    parser.add_argument(
        "--select_device",
        type=str,
        default="gpu",
        help="Device for selecting for the training.")
151 152 153 154 155 156 157 158 159 160
    parser.add_argument(
        "--use_amp",
        type=distutils.util.strtobool,
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--scale_loss",
        type=float,
        default=2**15,
        help="The value of scale_loss for fp16.")
G
Guo Sheng 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    args = parser.parse_args()
    return args


def set_seed(args):
    random.seed(args.seed + paddle.distributed.get_rank())
    np.random.seed(args.seed + paddle.distributed.get_rank())
    paddle.seed(args.seed + paddle.distributed.get_rank())


class WorkerInitObj(object):
    def __init__(self, seed):
        self.seed = seed

    def __call__(self, id):
        np.random.seed(seed=self.seed + id)
        random.seed(self.seed + id)


def create_pretraining_dataset(input_file, max_pred_length, shared_list, args,
                               worker_init):
182 183
    train_data = PretrainingDataset(
        input_file=input_file, max_pred_length=max_pred_length)
G
Guo Sheng 已提交
184
    # files have been sharded, no need to dispatch again
185 186
    train_batch_sampler = paddle.io.BatchSampler(
        train_data, batch_size=args.batch_size, shuffle=True)
G
Guo Sheng 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    # DataLoader cannot be pickled because of its place.
    # If it can be pickled, use global function instead of lambda and use
    # ProcessPoolExecutor instead of ThreadPoolExecutor to prefetch.
    def _collate_data(data, stack_fn=Stack()):
        num_fields = len(data[0])
        out = [None] * num_fields
        # input_ids, segment_ids, input_mask, masked_lm_positions,
        # masked_lm_labels, next_sentence_labels, mask_token_num
        for i in (0, 1, 2, 5):
            out[i] = stack_fn([x[i] for x in data])
        batch_size, seq_length = out[0].shape
        size = num_mask = sum(len(x[3]) for x in data)
        # Padding for divisibility by 8 for fp16 or int8 usage
        if size % 8 != 0:
            size += 8 - (size % 8)
        # masked_lm_positions
        # Organize as a 1D tensor for gather or use gather_nd
205
        out[3] = np.full(size, 0, dtype=np.int32)
G
Guo Sheng 已提交
206 207 208 209 210 211 212 213 214 215 216 217
        # masked_lm_labels
        out[4] = np.full([size, 1], -1, dtype=np.int64)
        mask_token_num = 0
        for i, x in enumerate(data):
            for j, pos in enumerate(x[3]):
                out[3][mask_token_num] = i * seq_length + pos
                out[4][mask_token_num] = x[4][j]
                mask_token_num += 1
        # mask_token_num
        out.append(np.asarray([mask_token_num], dtype=np.float32))
        return out

218 219 220 221 222 223 224
    train_data_loader = DataLoader(
        dataset=train_data,
        batch_sampler=train_batch_sampler,
        collate_fn=_collate_data,
        num_workers=0,
        worker_init_fn=worker_init,
        return_list=True)
G
Guo Sheng 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    return train_data_loader, input_file


class PretrainingDataset(Dataset):
    def __init__(self, input_file, max_pred_length):
        self.input_file = input_file
        self.max_pred_length = max_pred_length
        f = h5py.File(input_file, "r")
        keys = [
            'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions',
            'masked_lm_ids', 'next_sentence_labels'
        ]
        self.inputs = [np.asarray(f[key][:]) for key in keys]
        f.close()

    def __len__(self):
        'Denotes the total number of samples'
        return len(self.inputs[0])

    def __getitem__(self, index):

        [
            input_ids, input_mask, segment_ids, masked_lm_positions,
            masked_lm_ids, next_sentence_labels
        ] = [
            input[index].astype(np.int64)
            if indice < 5 else np.asarray(input[index].astype(np.int64))
            for indice, input in enumerate(self.inputs)
        ]
        # TODO: whether to use reversed mask by changing 1s and 0s to be
        # consistent with nv bert
256 257
        input_mask = (1 - np.reshape(
            input_mask.astype(np.float32), [1, 1, input_mask.shape[0]])) * -1e9
G
Guo Sheng 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

        index = self.max_pred_length
        # store number of  masked tokens in index
        # outputs of torch.nonzero diff with that of numpy.nonzero by zip
        padded_mask_indices = (masked_lm_positions == 0).nonzero()[0]
        if len(padded_mask_indices) != 0:
            index = padded_mask_indices[0].item()
            mask_token_num = index
        else:
            index = 0
            mask_token_num = 0
        # masked_lm_labels = np.full(input_ids.shape, -1, dtype=np.int64)
        # masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
        masked_lm_labels = masked_lm_ids[:index]
        masked_lm_positions = masked_lm_positions[:index]
        # softmax_with_cross_entropy enforce last dim size equal 1
        masked_lm_labels = np.expand_dims(masked_lm_labels, axis=-1)
        next_sentence_labels = np.expand_dims(next_sentence_labels, axis=-1)

        return [
            input_ids, segment_ids, input_mask, masked_lm_positions,
            masked_lm_labels, next_sentence_labels
        ]


def do_train(args):
284
    paddle.set_device(args.select_device)
G
Guo Sheng 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)
    worker_init = WorkerInitObj(args.seed + paddle.distributed.get_rank())

    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    model = BertForPretraining(
        BertModel(**model_class.pretrained_init_configuration[
            args.model_name_or_path]))
    criterion = BertPretrainingCriterion(
300 301
        getattr(model, BertForPretraining.base_model_prefix).config[
            "vocab_size"])
G
Guo Sheng 已提交
302 303 304 305 306
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    # If use defalut last_epoch, lr of the first iteration is 0.
    # Use `last_epoch = 0` to be consistent with nv bert.
307 308 309 310 311
    num_training_steps = args.max_steps if args.max_steps > 0 else len(
        train_data_loader) * args.num_train_epochs

    lr_scheduler = LinearDecayWithWarmup(
        args.learning_rate, num_training_steps, args.warmup_steps, last_epoch=0)
G
Guo Sheng 已提交
312 313 314 315 316 317 318 319 320 321

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])
G
Guo Sheng 已提交
322 323
    if args.use_amp:
        scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss)
G
Guo Sheng 已提交
324 325 326 327 328 329 330

    pool = ThreadPoolExecutor(1)
    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        files = [
            os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir)
331 332
            if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in
            f
G
Guo Sheng 已提交
333 334 335 336 337 338 339 340 341 342
        ]
        files.sort()
        num_files = len(files)
        random.Random(args.seed + epoch).shuffle(files)
        f_start_id = 0

        shared_file_list = {}

        if paddle.distributed.get_world_size() > num_files:
            remainder = paddle.distributed.get_world_size() % num_files
343 344 345 346
            data_file = files[(
                f_start_id * paddle.distributed.get_world_size() +
                paddle.distributed.get_rank() + remainder * f_start_id) %
                              num_files]
G
Guo Sheng 已提交
347 348 349 350 351 352 353 354
        else:
            data_file = files[(f_start_id * paddle.distributed.get_world_size()
                               + paddle.distributed.get_rank()) % num_files]

        previous_file = data_file

        train_data_loader, _ = create_pretraining_dataset(
            data_file, args.max_predictions_per_seq, shared_file_list, args,
355
            worker_init)
G
Guo Sheng 已提交
356 357

        # TODO(guosheng): better way to process single file
358 359
        single_file = True if f_start_id + 1 == len(files) else False

G
Guo Sheng 已提交
360
        for f_id in range(f_start_id, len(files)):
361
            if not single_file and f_id == f_start_id:
G
Guo Sheng 已提交
362 363
                continue
            if paddle.distributed.get_world_size() > num_files:
364 365 366 367
                data_file = files[(
                    f_id * paddle.distributed.get_world_size() +
                    paddle.distributed.get_rank() + remainder * f_id) %
                                  num_files]
G
Guo Sheng 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
            else:
                data_file = files[(f_id * paddle.distributed.get_world_size() +
                                   paddle.distributed.get_rank()) % num_files]

            previous_file = data_file
            dataset_future = pool.submit(create_pretraining_dataset, data_file,
                                         args.max_predictions_per_seq,
                                         shared_file_list, args, worker_init)
            for step, batch in enumerate(train_data_loader):
                global_step += 1
                (input_ids, segment_ids, input_mask, masked_lm_positions,
                 masked_lm_labels, next_sentence_labels,
                 masked_lm_scale) = batch
G
Guo Sheng 已提交
381 382 383 384 385 386 387 388 389
                with paddle.amp.auto_cast(
                        args.use_amp,
                        custom_white_list=["layer_norm", "softmax", "gelu"]):
                    prediction_scores, seq_relationship_score = model(
                        input_ids=input_ids,
                        token_type_ids=segment_ids,
                        attention_mask=input_mask,
                        masked_positions=masked_lm_positions)
                    loss = criterion(prediction_scores, seq_relationship_score,
390 391
                                     masked_lm_labels, next_sentence_labels,
                                     masked_lm_scale)
G
Guo Sheng 已提交
392 393 394 395 396 397 398 399
                if args.use_amp:
                    scaler.scale(loss).backward()
                    scaler.minimize(optimizer, loss)
                else:
                    loss.backward()
                    optimizer.step()
                lr_scheduler.step()
                optimizer.clear_gradients()
G
Guo Sheng 已提交
400
                if global_step % args.logging_steps == 0:
401
                    if (not args.n_cards > 1
G
Guo Sheng 已提交
402 403 404 405 406 407 408
                        ) or paddle.distributed.get_rank() == 0:
                        logger.info(
                            "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                            % (global_step, epoch, step, loss,
                               args.logging_steps / (time.time() - tic_train)))
                    tic_train = time.time()
                if global_step % args.save_steps == 0:
409
                    if (not args.n_cards > 1
G
Guo Sheng 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
                        ) or paddle.distributed.get_rank() == 0:
                        output_dir = os.path.join(args.output_dir,
                                                  "model_%d" % global_step)
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # need better way to get inner model of DataParallel
                        model_to_save = model._layers if isinstance(
                            model, paddle.DataParallel) else model
                        model_to_save.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(
                            optimizer.state_dict(),
                            os.path.join(output_dir, "model_state.pdopt"))
                if global_step >= args.max_steps:
                    del train_data_loader
                    return

            del train_data_loader
            train_data_loader, data_file = dataset_future.result(timeout=None)


if __name__ == "__main__":
    args = parse_args()
433 434
    if args.n_cards > 1 and args.select_device == "gpu":
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_cards)
G
Guo Sheng 已提交
435 436
    else:
        do_train(args)