run_pretrain.py 15.6 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import itertools
import logging
import os
import random
import time
import h5py
from functools import partial
from concurrent.futures import ThreadPoolExecutor

import numpy as np

import paddle
import paddle.distributed as dist
from paddle.io import DataLoader, Dataset

from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import BertForPretraining, BertModel, BertPretrainingCriterion
34 35
from paddlenlp.transformers import ErnieForPretraining, ErnieModel, ErniePretrainingCriterion
from paddlenlp.transformers import BertTokenizer, ErnieTokenizer
G
Guo Sheng 已提交
36 37 38 39 40 41 42

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

MODEL_CLASSES = {
    "bert": (BertForPretraining, BertTokenizer),
43
    "ernie": (ErnieForPretraining, ErnieTokenizer)
G
Guo Sheng 已提交
44 45 46 47 48 49 50 51 52 53 54
}


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
55
        ", ".join(MODEL_CLASSES.keys()), )
G
Guo Sheng 已提交
56 57 58 59 60 61 62 63 64 65
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
66
            ], [])), )
G
Guo Sheng 已提交
67 68 69 70 71
    parser.add_argument(
        "--input_dir",
        default=None,
        type=str,
        required=True,
72
        help="The input directory where the data will be read from.", )
G
Guo Sheng 已提交
73 74 75 76 77
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
78
        help="The output directory where the model predictions and checkpoints will be written.",
G
Guo Sheng 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    )

    parser.add_argument(
        "--max_predictions_per_seq",
        default=80,
        type=int,
        help="The maximum total of masked tokens in input sequence")

    parser.add_argument(
        "--batch_size",
        default=8,
        type=int,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-8,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
G
Guo Sheng 已提交
109 110 111 112
    parser.add_argument(
        "--num_train_epochs",
        default=3,
        type=int,
113
        help="Total number of training epochs to perform.", )
G
Guo Sheng 已提交
114 115 116 117
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
118
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
G
Guo Sheng 已提交
119
    )
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")

    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument(
        "--n_cards",
        default=1,
        type=int,
        help="Number cards for the training, only support multi cards in the gpu."
    )
    parser.add_argument(
        "--select_device",
        type=str,
        default="gpu",
        help="Device for selecting for the training.")
G
Guo Sheng 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    args = parser.parse_args()
    return args


def set_seed(args):
    random.seed(args.seed + paddle.distributed.get_rank())
    np.random.seed(args.seed + paddle.distributed.get_rank())
    paddle.seed(args.seed + paddle.distributed.get_rank())


class WorkerInitObj(object):
    def __init__(self, seed):
        self.seed = seed

    def __call__(self, id):
        np.random.seed(seed=self.seed + id)
        random.seed(self.seed + id)


def create_pretraining_dataset(input_file, max_pred_length, shared_list, args,
                               worker_init):
170 171
    train_data = PretrainingDataset(
        input_file=input_file, max_pred_length=max_pred_length)
G
Guo Sheng 已提交
172
    # files have been sharded, no need to dispatch again
173 174
    train_batch_sampler = paddle.io.BatchSampler(
        train_data, batch_size=args.batch_size, shuffle=True)
G
Guo Sheng 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    # DataLoader cannot be pickled because of its place.
    # If it can be pickled, use global function instead of lambda and use
    # ProcessPoolExecutor instead of ThreadPoolExecutor to prefetch.
    def _collate_data(data, stack_fn=Stack()):
        num_fields = len(data[0])
        out = [None] * num_fields
        # input_ids, segment_ids, input_mask, masked_lm_positions,
        # masked_lm_labels, next_sentence_labels, mask_token_num
        for i in (0, 1, 2, 5):
            out[i] = stack_fn([x[i] for x in data])
        batch_size, seq_length = out[0].shape
        size = num_mask = sum(len(x[3]) for x in data)
        # Padding for divisibility by 8 for fp16 or int8 usage
        if size % 8 != 0:
            size += 8 - (size % 8)
        # masked_lm_positions
        # Organize as a 1D tensor for gather or use gather_nd
193
        out[3] = np.full(size, 0, dtype=np.int32)
G
Guo Sheng 已提交
194 195 196 197 198 199 200 201 202 203 204 205
        # masked_lm_labels
        out[4] = np.full([size, 1], -1, dtype=np.int64)
        mask_token_num = 0
        for i, x in enumerate(data):
            for j, pos in enumerate(x[3]):
                out[3][mask_token_num] = i * seq_length + pos
                out[4][mask_token_num] = x[4][j]
                mask_token_num += 1
        # mask_token_num
        out.append(np.asarray([mask_token_num], dtype=np.float32))
        return out

206 207 208 209 210 211 212
    train_data_loader = DataLoader(
        dataset=train_data,
        batch_sampler=train_batch_sampler,
        collate_fn=_collate_data,
        num_workers=0,
        worker_init_fn=worker_init,
        return_list=True)
G
Guo Sheng 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    return train_data_loader, input_file


class PretrainingDataset(Dataset):
    def __init__(self, input_file, max_pred_length):
        self.input_file = input_file
        self.max_pred_length = max_pred_length
        f = h5py.File(input_file, "r")
        keys = [
            'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions',
            'masked_lm_ids', 'next_sentence_labels'
        ]
        self.inputs = [np.asarray(f[key][:]) for key in keys]
        f.close()

    def __len__(self):
        'Denotes the total number of samples'
        return len(self.inputs[0])

    def __getitem__(self, index):

        [
            input_ids, input_mask, segment_ids, masked_lm_positions,
            masked_lm_ids, next_sentence_labels
        ] = [
            input[index].astype(np.int64)
            if indice < 5 else np.asarray(input[index].astype(np.int64))
            for indice, input in enumerate(self.inputs)
        ]
        # TODO: whether to use reversed mask by changing 1s and 0s to be
        # consistent with nv bert
244 245
        input_mask = (1 - np.reshape(
            input_mask.astype(np.float32), [1, 1, input_mask.shape[0]])) * -1e9
G
Guo Sheng 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

        index = self.max_pred_length
        # store number of  masked tokens in index
        # outputs of torch.nonzero diff with that of numpy.nonzero by zip
        padded_mask_indices = (masked_lm_positions == 0).nonzero()[0]
        if len(padded_mask_indices) != 0:
            index = padded_mask_indices[0].item()
            mask_token_num = index
        else:
            index = 0
            mask_token_num = 0
        # masked_lm_labels = np.full(input_ids.shape, -1, dtype=np.int64)
        # masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
        masked_lm_labels = masked_lm_ids[:index]
        masked_lm_positions = masked_lm_positions[:index]
        # softmax_with_cross_entropy enforce last dim size equal 1
        masked_lm_labels = np.expand_dims(masked_lm_labels, axis=-1)
        next_sentence_labels = np.expand_dims(next_sentence_labels, axis=-1)

        return [
            input_ids, segment_ids, input_mask, masked_lm_positions,
            masked_lm_labels, next_sentence_labels
        ]


def do_train(args):
272
    paddle.set_device(args.select_device)
G
Guo Sheng 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)
    worker_init = WorkerInitObj(args.seed + paddle.distributed.get_rank())

    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    model = BertForPretraining(
        BertModel(**model_class.pretrained_init_configuration[
            args.model_name_or_path]))
    criterion = BertPretrainingCriterion(
288 289
        getattr(model, BertForPretraining.base_model_prefix).config[
            "vocab_size"])
G
Guo Sheng 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    # If use defalut last_epoch, lr of the first iteration is 0.
    # Use `last_epoch = 0` to be consistent with nv bert.
    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lambda current_step, num_warmup_steps=args.warmup_steps,
        num_training_steps=args.max_steps if args.max_steps > 0 else
        (len(train_data_loader) * args.num_train_epochs): float(
            current_step) / float(max(1, num_warmup_steps))
        if current_step < num_warmup_steps else max(
            0.0,
            float(num_training_steps - current_step) / float(
                max(1, num_training_steps - num_warmup_steps))),
        last_epoch=0)

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])

    pool = ThreadPoolExecutor(1)
    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        files = [
            os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir)
323 324
            if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in
            f
G
Guo Sheng 已提交
325 326 327 328 329 330 331 332 333 334
        ]
        files.sort()
        num_files = len(files)
        random.Random(args.seed + epoch).shuffle(files)
        f_start_id = 0

        shared_file_list = {}

        if paddle.distributed.get_world_size() > num_files:
            remainder = paddle.distributed.get_world_size() % num_files
335 336 337 338
            data_file = files[(
                f_start_id * paddle.distributed.get_world_size() +
                paddle.distributed.get_rank() + remainder * f_start_id) %
                              num_files]
G
Guo Sheng 已提交
339 340 341 342 343 344 345 346
        else:
            data_file = files[(f_start_id * paddle.distributed.get_world_size()
                               + paddle.distributed.get_rank()) % num_files]

        previous_file = data_file

        train_data_loader, _ = create_pretraining_dataset(
            data_file, args.max_predictions_per_seq, shared_file_list, args,
347
            worker_init)
G
Guo Sheng 已提交
348 349

        # TODO(guosheng): better way to process single file
350 351
        single_file = True if f_start_id + 1 == len(files) else False

G
Guo Sheng 已提交
352
        for f_id in range(f_start_id, len(files)):
353
            if not single_file and f_id == f_start_id:
G
Guo Sheng 已提交
354 355
                continue
            if paddle.distributed.get_world_size() > num_files:
356 357 358 359
                data_file = files[(
                    f_id * paddle.distributed.get_world_size() +
                    paddle.distributed.get_rank() + remainder * f_id) %
                                  num_files]
G
Guo Sheng 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            else:
                data_file = files[(f_id * paddle.distributed.get_world_size() +
                                   paddle.distributed.get_rank()) % num_files]

            previous_file = data_file
            dataset_future = pool.submit(create_pretraining_dataset, data_file,
                                         args.max_predictions_per_seq,
                                         shared_file_list, args, worker_init)
            for step, batch in enumerate(train_data_loader):
                global_step += 1
                (input_ids, segment_ids, input_mask, masked_lm_positions,
                 masked_lm_labels, next_sentence_labels,
                 masked_lm_scale) = batch
                prediction_scores, seq_relationship_score = model(
                    input_ids=input_ids,
                    token_type_ids=segment_ids,
                    attention_mask=input_mask,
                    masked_positions=masked_lm_positions)
                loss = criterion(prediction_scores, seq_relationship_score,
                                 masked_lm_labels, next_sentence_labels,
                                 masked_lm_scale)
                if global_step % args.logging_steps == 0:
382
                    if (not args.n_cards > 1
G
Guo Sheng 已提交
383 384 385 386 387 388 389 390 391 392 393
                        ) or paddle.distributed.get_rank() == 0:
                        logger.info(
                            "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                            % (global_step, epoch, step, loss,
                               args.logging_steps / (time.time() - tic_train)))
                    tic_train = time.time()
                loss.backward()
                optimizer.step()
                lr_scheduler.step()
                optimizer.clear_gradients()
                if global_step % args.save_steps == 0:
394
                    if (not args.n_cards > 1
G
Guo Sheng 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                        ) or paddle.distributed.get_rank() == 0:
                        output_dir = os.path.join(args.output_dir,
                                                  "model_%d" % global_step)
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # need better way to get inner model of DataParallel
                        model_to_save = model._layers if isinstance(
                            model, paddle.DataParallel) else model
                        model_to_save.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(
                            optimizer.state_dict(),
                            os.path.join(output_dir, "model_state.pdopt"))
                if global_step >= args.max_steps:
                    del train_data_loader
                    return

            del train_data_loader
            train_data_loader, data_file = dataset_future.result(timeout=None)


if __name__ == "__main__":
    args = parse_args()
418 419
    if args.n_cards > 1 and args.select_device == "gpu":
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_cards)
G
Guo Sheng 已提交
420 421
    else:
        do_train(args)