eval.py 8.4 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

R
root 已提交
15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
R
ruri 已提交
18

19
import os
20 21
import time
import sys
R
ruri 已提交
22 23
import math
import numpy as np
24 25
import argparse
import functools
26
import logging
R
ruri 已提交
27 28 29

import paddle
import paddle.fluid as fluid
R
ruri 已提交
30
import reader
31
import models
R
ruri 已提交
32
from utils import *
33 34 35 36

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
R
ruri 已提交
37
add_arg('data_dir',         str,  "./data/ILSVRC2012/", "The ImageNet datset")
38
add_arg('batch_size',       int,  256,                  "batch size on all the devices.")
R
ruri 已提交
39 40 41 42 43 44 45 46 47
add_arg('use_gpu',          bool, True,                 "Whether to use GPU or not.")
add_arg('class_dim',        int,  1000,                 "Class number.")
parser.add_argument("--pretrained_model", default=None, required=True, type=str, help="The path to load pretrained model")
add_arg('model',            str,  "ResNet50", "Set the network to use.")
add_arg('resize_short_size', int, 256,                  "Set resize short size")
add_arg('reader_thread',    int,  8,                    "The number of multi thread reader")
add_arg('reader_buf_size',  int,  2048,                 "The buf size of multi thread reader")
parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406], help="The mean of input image data")
parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225], help="The std of input image data")
R
ruri 已提交
48
parser.add_argument('--image_shape', nargs="+",  type=int, default=[3,224,224], help=" The shape of image")
49 50
add_arg('interpolation',    int,  None,                 "The interpolation mode")
add_arg('padding_type',     str,  "SAME",               "Padding type of convolution")
51
add_arg('use_se',           bool, True,                 "Whether to use Squeeze-and-Excitation module for EfficientNet.")
52 53
add_arg('save_json_path',   str,  None,                 "Whether to save output in json file.")
add_arg('same_feed',        int,  0,                    "Whether to feed same images")
54
add_arg('print_step',       int,  1,                    "the batch step to print info")
55
add_arg('deploy',                bool,    False,                      "deploy mode, currently used in ACNet")
56 57
# yapf: enable

58 59 60
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

61

62
def eval(args):
63
    model_list = [m for m in dir(models) if "__" not in m]
R
ruri 已提交
64
    assert args.model in model_list, "{} is not in lists: {}".format(args.model,
65
                                                                     model_list)
R
ruri 已提交
66 67 68 69
    assert os.path.isdir(
        args.pretrained_model
    ), "{} doesn't exist, please load right pretrained model path for eval".format(
        args.pretrained_model)
70

71 72 73
    assert args.image_shape[
        1] <= args.resize_short_size, "Please check the args:image_shape and args:resize_short_size, The croped size(image_shape[1]) must smaller than or equal to the resized length(resize_short_size) "

74 75 76 77 78
    # check gpu: when using gpu, the number of visible cards should divide batch size
    if args.use_gpu:
        assert args.batch_size % fluid.core.get_cuda_device_count(
        ) == 0, "please support correct batch_size({}), which can be divided by available cards({}), you can change the number of cards by indicating: export CUDA_VISIBLE_DEVICES= ".format(
            args.batch_size, fluid.core.get_cuda_device_count())
79
    image = fluid.data(
80
        name='image', shape=[None] + args.image_shape, dtype='float32')
81
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')
82

83
    # model definition
84
    if args.model.startswith('EfficientNet'):
85 86
        model = models.__dict__[args.model](is_test=True,
                                            padding_type=args.padding_type,
87
                                            use_se=args.use_se)
88 89
    elif "ACNet" in args.model:
        model = models.__dict__[args.model](deploy=args.deploy)
90 91
    else:
        model = models.__dict__[args.model]()
92

R
ruri 已提交
93 94
    if args.model == "GoogLeNet":
        out0, out1, out2 = model.net(input=image, class_dim=args.class_dim)
95 96 97 98 99 100 101 102 103 104 105
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
    else:
R
ruri 已提交
106 107
        out = model.net(input=image, class_dim=args.class_dim)

108 109
        cost, pred = fluid.layers.softmax_with_cross_entropy(
            out, label, return_softmax=True)
110
        avg_cost = fluid.layers.mean(x=cost)
111 112
        acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
113 114 115

    test_program = fluid.default_main_program().clone(for_test=True)

116
    fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name, pred.name]
117
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
118

119
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
120
    exe = fluid.Executor(place)
121

122
    exe.run(fluid.default_startup_program())
123 124 125 126 127
    if args.use_gpu:
        places = fluid.framework.cuda_places()

    compiled_program = fluid.compiler.CompiledProgram(
        test_program).with_data_parallel(places=places)
128

R
ruri 已提交
129
    fluid.io.load_persistables(exe, args.pretrained_model)
130 131
    imagenet_reader = reader.ImageNetReader()
    val_reader = imagenet_reader.val(settings=args)
132

133 134
    # set places to run on the multi-card
    feeder = fluid.DataFeeder(place=places, feed_list=[image, label])
135

136
    test_info = [[], [], []]
137
    cnt = 0
138 139 140 141 142 143
    parallel_data = []
    parallel_id = []
    place_num = paddle.fluid.core.get_cuda_device_count()
    real_iter = 0
    info_dict = {}

144
    for batch_id, data in enumerate(val_reader()):
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        #image data and label
        image_data = [items[0:2] for items in data]
        image_id = [items[2] for items in data]
        parallel_id.append(image_id)
        parallel_data.append(image_data)
        if place_num == len(parallel_data):
            t1 = time.time()
            loss_set, acc1_set, acc5_set, pred_set = exe.run(
                compiled_program,
                fetch_list=fetch_list,
                feed=list(feeder.feed_parallel(parallel_data, place_num)))
            t2 = time.time()
            period = t2 - t1
            loss = np.mean(loss_set)
            acc1 = np.mean(acc1_set)
            acc5 = np.mean(acc5_set)
            test_info[0].append(loss * len(data))
            test_info[1].append(acc1 * len(data))
            test_info[2].append(acc5 * len(data))
            cnt += len(data)
            if batch_id % args.print_step == 0:
                info = "Testbatch {0},loss {1}, acc1 {2},acc5 {3},time {4}".format(real_iter, \
167
                  "%.5f"%loss,"%.5f"%acc1, "%.5f"%acc5, \
168
                  "%2.2f sec" % period)
169
                logger.info(info)
170 171 172 173 174
                sys.stdout.flush()

            parallel_id = []
            parallel_data = []
            real_iter += 1
175

176 177 178
    test_loss = np.sum(test_info[0]) / cnt
    test_acc1 = np.sum(test_info[1]) / cnt
    test_acc5 = np.sum(test_info[2]) / cnt
179

180 181 182 183 184 185 186 187 188
    info = "Test_loss {0}, test_acc1 {1}, test_acc5 {2}".format(
        "%.5f" % test_loss, "%.5f" % test_acc1, "%.5f" % test_acc5)
    if args.save_json_path:
        info_dict = {
            "Test_loss": test_loss,
            "test_acc1": test_acc1,
            "test_acc5": test_acc5
        }
        save_json(info_dict, args.save_json_path)
189
    logger.info(info)
190 191 192
    sys.stdout.flush()


193
def main():
194 195
    args = parser.parse_args()
    print_arguments(args)
R
ruri 已提交
196
    check_gpu()
197
    check_version()
198
    eval(args)
199 200 201 202


if __name__ == '__main__':
    main()