run.py 25.3 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import json
X
xuezhong 已提交
24
import six
25
import multiprocessing
X
xuezhong 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
sys.path.append('..')

from args import *
import rc_model
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
X
xuezhong 已提交
46
from vocab import Vocab
X
xuezhong 已提交
47

Q
qiuxuezhong 已提交
48

X
xuezhong 已提交
49 50
def prepare_batch_input(insts, args):
    batch_size = len(insts['raw_data'])
X
xuezhong 已提交
51 52 53 54
    inst_num = len(insts['passage_num'])
    if batch_size != inst_num:
        print("data error %d, %d" % (batch_size, inst_num))
        return None
X
xuezhong 已提交
55 56
    new_insts = []

X
xuezhong 已提交
57
    passage_idx = 0
X
xuezhong 已提交
58
    for i in range(batch_size):
X
xuezhong 已提交
59
        p_len = 0
X
xuezhong 已提交
60 61 62
        p_id = []
        p_ids = []
        q_ids = []
X
xuezhong 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
        q_id = []
        p_id_r = []
        p_ids_r = []
        q_ids_r = []
        q_id_r = []

        for j in range(insts['passage_num'][i]):
            p_ids.append(insts['passage_token_ids'][passage_idx + j])
            p_id = p_id + insts['passage_token_ids'][passage_idx + j]
            q_ids.append(insts['question_token_ids'][passage_idx + j])
            q_id = q_id + insts['question_token_ids'][passage_idx + j]

        passage_idx += insts['passage_num'][i]
X
xuezhong 已提交
76 77 78 79 80 81 82 83 84 85
        p_len = len(p_id)

        def _get_label(idx, ref_len):
            ret = [0.0] * ref_len
            if idx >= 0 and idx < ref_len:
                ret[idx] = 1.0
            return [[x] for x in ret]

        start_label = _get_label(insts['start_id'][i], p_len)
        end_label = _get_label(insts['end_id'][i], p_len)
X
xuezhong 已提交
86
        new_inst = [q_ids, start_label, end_label, p_ids, q_id]
X
xuezhong 已提交
87 88 89 90
        new_insts.append(new_inst)
    return new_insts


X
xuezhong 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def batch_reader(batch_list, args):
    res = []
    for batch in batch_list:
        res.append(prepare_batch_input(batch, args))
    return res


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
                    data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                    for i in range(count)
                ]

    return __impl__


X
xuezhong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
def LodTensor_Array(lod_tensor):
    lod = lod_tensor.lod()
    array = np.array(lod_tensor)
    new_array = []
    for i in range(len(lod[0]) - 1):
        new_array.append(array[lod[0][i]:lod[0][i + 1]])
    return new_array


def print_para(train_prog, train_exe, logger, args):
    if args.para_print:
        param_list = train_prog.block(0).all_parameters()
        param_name_list = [p.name for p in param_list]
        num_sum = 0
        for p_name in param_name_list:
            p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
            param_num = np.prod(p_array.shape)
            num_sum = num_sum + param_num
Q
qiuxuezhong 已提交
144 145 146 147 148
            logger.info(
                "param: {0},  mean={1}  max={2}  min={3}  num={4} {5}".format(
                    p_name,
                    p_array.mean(),
                    p_array.max(), p_array.min(), p_array.shape, param_num))
X
xuezhong 已提交
149 150 151
        logger.info("total param num: {0}".format(num_sum))


X
xuezhong 已提交
152
def find_best_answer_for_passage(start_probs, end_probs, passage_len):
X
xuezhong 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    """
    Finds the best answer with the maximum start_prob * end_prob from a single passage
    """
    if passage_len is None:
        passage_len = len(start_probs)
    else:
        passage_len = min(len(start_probs), passage_len)
    best_start, best_end, max_prob = -1, -1, 0
    for start_idx in range(passage_len):
        for ans_len in range(args.max_a_len):
            end_idx = start_idx + ans_len
            if end_idx >= passage_len:
                continue
            prob = start_probs[start_idx] * end_probs[end_idx]
            if prob > max_prob:
                best_start = start_idx
                best_end = end_idx
                max_prob = prob
    return (best_start, best_end), max_prob


X
xuezhong 已提交
174
def find_best_answer_for_inst(sample, start_prob, end_prob, inst_lod):
X
xuezhong 已提交
175 176 177 178 179 180 181 182
    """
    Finds the best answer for a sample given start_prob and end_prob for each position.
    This will call find_best_answer_for_passage because there are multiple passages in a sample
    """
    best_p_idx, best_span, best_score = None, None, 0
    for p_idx, passage in enumerate(sample['passages']):
        if p_idx >= args.max_p_num:
            continue
X
xuezhong 已提交
183 184 185 186 187 188
        if len(start_prob) != len(end_prob):
            logger.info('error: {}'.format(sample['question']))
            continue
        passage_start = inst_lod[p_idx] - inst_lod[0]
        passage_end = inst_lod[p_idx + 1] - inst_lod[0]
        passage_len = passage_end - passage_start
X
xuezhong 已提交
189 190
        passage_len = min(args.max_p_len, len(passage['passage_tokens']))
        answer_span, score = find_best_answer_for_passage(
X
xuezhong 已提交
191 192
            start_prob[passage_start:passage_end],
            end_prob[passage_start:passage_end], passage_len)
X
xuezhong 已提交
193 194 195 196 197 198 199 200 201
        if score > best_score:
            best_score = score
            best_p_idx = p_idx
            best_span = answer_span
    if best_p_idx is None or best_span is None:
        best_answer = ''
    else:
        best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
            best_span[0]:best_span[1] + 1])
X
xuezhong 已提交
202
    return best_answer, best_span
X
xuezhong 已提交
203 204


X
xuezhong 已提交
205 206
def validation(inference_program, avg_cost, s_probs, e_probs, match, feed_order,
               place, dev_count, vocab, brc_data, logger, args):
X
xuezhong 已提交
207 208 209 210
    """
        
    """
    parallel_executor = fluid.ParallelExecutor(
Q
qiuxuezhong 已提交
211 212 213 214
        main_program=inference_program,
        use_cuda=bool(args.use_gpu),
        loss_name=avg_cost.name)
    print_para(inference_program, parallel_executor, logger, args)
X
xuezhong 已提交
215 216 217 218

    # Use test set as validation each pass
    total_loss = 0.0
    count = 0
X
xuezhong 已提交
219 220
    n_batch_cnt = 0
    n_batch_loss = 0.0
X
xuezhong 已提交
221 222 223 224 225 226 227
    pred_answers, ref_answers = [], []
    val_feed_list = [
        inference_program.global_block().var(var_name)
        for var_name in feed_order
    ]
    val_feeder = fluid.DataFeeder(val_feed_list, place)
    pad_id = vocab.get_id(vocab.pad_token)
X
xuezhong 已提交
228 229
    dev_reader = lambda:brc_data.gen_mini_batches('dev', args.batch_size, pad_id, shuffle=False)
    dev_reader = read_multiple(dev_reader, dev_count)
X
xuezhong 已提交
230

X
xuezhong 已提交
231 232
    for batch_id, batch_list in enumerate(dev_reader(), 1):
        feed_data = batch_reader(batch_list, args)
X
xuezhong 已提交
233
        val_fetch_outs = parallel_executor.run(
X
xuezhong 已提交
234 235
            feed=list(val_feeder.feed_parallel(feed_data, dev_count)),
            fetch_list=[avg_cost.name, s_probs.name, e_probs.name, match.name],
Q
qiuxuezhong 已提交
236
            return_numpy=False)
X
xuezhong 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        total_loss += np.array(val_fetch_outs[0]).sum()
        start_probs_m = LodTensor_Array(val_fetch_outs[1])
        end_probs_m = LodTensor_Array(val_fetch_outs[2])
        match_lod = val_fetch_outs[3].lod()
        count += len(np.array(val_fetch_outs[0]))

        n_batch_cnt += len(np.array(val_fetch_outs[0]))
        n_batch_loss += np.array(val_fetch_outs[0]).sum()
        log_every_n_batch = args.log_interval
        if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
            logger.info('Average dev loss from batch {} to {} is {}'.format(
                batch_id - log_every_n_batch + 1, batch_id, "%.10f" % (
                    n_batch_loss / n_batch_cnt)))
            n_batch_loss = 0.0
            n_batch_cnt = 0
X
xuezhong 已提交
252
        batch_offset = 0
X
xuezhong 已提交
253 254 255
        for idx, batch in enumerate(batch_list):
            #one batch
            batch_size = len(batch['raw_data'])
X
xuezhong 已提交
256
            batch_range = match_lod[0][batch_offset:batch_offset + batch_size +
X
xuezhong 已提交
257 258 259
                                       1]
            batch_lod = [[batch_range[x], batch_range[x + 1]]
                         for x in range(len(batch_range[:-1]))]
X
xuezhong 已提交
260 261 262 263
            start_prob_batch = start_probs_m[batch_offset:batch_offset +
                                             batch_size + 1]
            end_prob_batch = end_probs_m[batch_offset:batch_offset + batch_size
                                         + 1]
X
xuezhong 已提交
264 265 266 267 268 269 270 271
            for sample, start_prob_inst, end_prob_inst, inst_range in zip(
                    batch['raw_data'], start_prob_batch, end_prob_batch,
                    batch_lod):
                #one instance
                inst_lod = match_lod[1][inst_range[0]:inst_range[1] + 1]
                best_answer, best_span = find_best_answer_for_inst(
                    sample, start_prob_inst, end_prob_inst, inst_lod)
                pred = {
X
xuezhong 已提交
272 273
                    'question_id': sample['question_id'],
                    'question_type': sample['question_type'],
X
xuezhong 已提交
274
                    'answers': [best_answer],
X
xuezhong 已提交
275
                    'entity_answers': [[]],
X
xuezhong 已提交
276 277 278 279 280 281 282 283 284 285 286 287
                    'yesno_answers': [best_span]
                }
                pred_answers.append(pred)
                if 'answers' in sample:
                    ref = {
                        'question_id': sample['question_id'],
                        'question_type': sample['question_type'],
                        'answers': sample['answers'],
                        'entity_answers': [[]],
                        'yesno_answers': []
                    }
                    ref_answers.append(ref)
X
xuezhong 已提交
288
            batch_offset = batch_offset + batch_size
X
xuezhong 已提交
289 290 291 292

    result_dir = args.result_dir
    result_prefix = args.result_name
    if result_dir is not None and result_prefix is not None:
X
xuezhong 已提交
293 294
        if not os.path.exists(args.result_dir):
            os.makedirs(args.result_dir)
X
xuezhong 已提交
295
        result_file = os.path.join(result_dir, result_prefix + 'json')
Q
qiuxuezhong 已提交
296 297 298
        with open(result_file, 'w') as fout:
            for pred_answer in pred_answers:
                fout.write(json.dumps(pred_answer, ensure_ascii=False) + '\n')
X
xuezhong 已提交
299
        logger.info('Saving {} results to {}'.format(result_prefix,
Q
qiuxuezhong 已提交
300
                                                     result_file))
X
xuezhong 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    ave_loss = 1.0 * total_loss / count
    # compute the bleu and rouge scores if reference answers is provided
    if len(ref_answers) > 0:
        pred_dict, ref_dict = {}, {}
        for pred, ref in zip(pred_answers, ref_answers):
            question_id = ref['question_id']
            if len(ref['answers']) > 0:
                pred_dict[question_id] = normalize(pred['answers'])
                ref_dict[question_id] = normalize(ref['answers'])
        bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
    else:
        bleu_rouge = None
    return ave_loss, bleu_rouge

Q
qiuxuezhong 已提交
316

X
xuezhong 已提交
317 318 319 320 321 322 323 324 325
def l2_loss(train_prog):
    param_list = train_prog.block(0).all_parameters()
    para_sum = []
    for para in param_list:
        para_mul = fluid.layers.elementwise_mul(x=para, y=para, axis=0)
        para_sum.append(fluid.layers.reduce_sum(input=para_mul, dim=None))
    return fluid.layers.sums(para_sum) * 0.5


X
xuezhong 已提交
326 327 328
def train(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
X
xuezhong 已提交
329 330 331 332
        if six.PY2:
            vocab = pickle.load(fin)
        else:
            vocab = pickle.load(fin, encoding='bytes')
X
xuezhong 已提交
333 334 335 336 337 338 339 340
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

X
xuezhong 已提交
341 342 343 344 345 346 347
    if not args.use_gpu:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

X
xuezhong 已提交
348 349 350
    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
X
xuezhong 已提交
351 352 353
    if args.enable_ce:
        main_program.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
354 355
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
356
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
357
                args.hidden_size, vocab, args)
X
xuezhong 已提交
358 359 360
            # clone from default main program and use it as the validation program
            inference_program = main_program.clone(for_test=True)

Q
qiuxuezhong 已提交
361 362 363
            # build optimizer
            if args.optim == 'sgd':
                optimizer = fluid.optimizer.SGD(
X
xuezhong 已提交
364
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
365 366
            elif args.optim == 'adam':
                optimizer = fluid.optimizer.Adam(
X
xuezhong 已提交
367
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
368 369
            elif args.optim == 'rprop':
                optimizer = fluid.optimizer.RMSPropOptimizer(
X
xuezhong 已提交
370
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
371 372 373
            else:
                logger.error('Unsupported optimizer: {}'.format(args.optim))
                exit(-1)
X
xuezhong 已提交
374
            if args.weight_decay > 0.0:
X
fix bug  
xuezhong 已提交
375 376 377 378 379
                obj_func = avg_cost + args.weight_decay * l2_loss(main_program)
                optimizer.minimize(obj_func)
            else:
                obj_func = avg_cost
                optimizer.minimize(obj_func)
Q
qiuxuezhong 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

            # initialize parameters
            place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                exe.run(startup_prog)
                embedding_para = fluid.global_scope().find_var(
                    'embedding_para').get_tensor()
                embedding_para.set(vocab.embeddings.astype(np.float32), place)

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)

            logger.info('Training the model...')
            parallel_executor = fluid.ParallelExecutor(
                main_program=main_program,
                use_cuda=bool(args.use_gpu),
                loss_name=avg_cost.name)
            print_para(main_program, parallel_executor, logger, args)

            for pass_id in range(1, args.pass_num + 1):
                pass_start_time = time.time()
                pad_id = vocab.get_id(vocab.pad_token)
X
xuezhong 已提交
411 412 413 414
                if args.enable_ce:
                    train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=False)
                else:
                    train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=True)
X
xuezhong 已提交
415
                train_reader = read_multiple(train_reader, dev_count)
Q
qiuxuezhong 已提交
416 417
                log_every_n_batch, n_batch_loss = args.log_interval, 0
                total_num, total_loss = 0, 0
X
xuezhong 已提交
418 419
                for batch_id, batch_list in enumerate(train_reader(), 1):
                    feed_data = batch_reader(batch_list, args)
Q
qiuxuezhong 已提交
420
                    fetch_outs = parallel_executor.run(
X
xuezhong 已提交
421
                        feed=list(feeder.feed_parallel(feed_data, dev_count)),
X
fix bug  
xuezhong 已提交
422
                        fetch_list=[obj_func.name],
Q
qiuxuezhong 已提交
423
                        return_numpy=False)
X
xuezhong 已提交
424 425
                    cost_train = np.array(fetch_outs[0]).mean()
                    total_num += args.batch_size * dev_count
Q
qiuxuezhong 已提交
426
                    n_batch_loss += cost_train
X
xuezhong 已提交
427 428
                    total_loss += cost_train * args.batch_size * dev_count

X
add ce  
xuezhong 已提交
429 430
                    if args.enable_ce and batch_id >= 100:
                        break
Q
qiuxuezhong 已提交
431 432 433 434 435 436 437 438 439
                    if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
                        print_para(main_program, parallel_executor, logger,
                                   args)
                        logger.info(
                            'Average loss from batch {} to {} is {}'.format(
                                batch_id - log_every_n_batch + 1, batch_id,
                                "%.10f" % (n_batch_loss / log_every_n_batch)))
                        n_batch_loss = 0
                    if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
X
xuezhong 已提交
440 441 442 443 444 445 446 447
                        if brc_data.dev_set is not None:
                            eval_loss, bleu_rouge = validation(
                                inference_program, avg_cost, s_probs, e_probs,
                                match, feed_order, place, dev_count, vocab,
                                brc_data, logger, args)
                            logger.info('Dev eval loss {}'.format(eval_loss))
                            logger.info('Dev eval result: {}'.format(
                                bleu_rouge))
Q
qiuxuezhong 已提交
448
                pass_end_time = time.time()
449 450 451
                time_consumed = pass_end_time - pass_start_time
                logger.info('epoch: {0}, epoch_time_cost: {1:.2f}'.format(
                    pass_id, time_consumed))
Q
qiuxuezhong 已提交
452 453 454 455
                logger.info('Evaluating the model after epoch {}'.format(
                    pass_id))
                if brc_data.dev_set is not None:
                    eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
456 457 458
                        inference_program, avg_cost, s_probs, e_probs, match,
                        feed_order, place, dev_count, vocab, brc_data, logger,
                        args)
Q
qiuxuezhong 已提交
459 460 461 462 463
                    logger.info('Dev eval loss {}'.format(eval_loss))
                    logger.info('Dev eval result: {}'.format(bleu_rouge))
                else:
                    logger.warning(
                        'No dev set is loaded for evaluation in the dataset!')
464

Q
qiuxuezhong 已提交
465 466 467 468 469 470 471 472 473 474 475 476
                logger.info('Average train loss for epoch {} is {}'.format(
                    pass_id, "%.10f" % (1.0 * total_loss / total_num)))

                if pass_id % args.save_interval == 0:
                    model_path = os.path.join(args.save_dir, str(pass_id))
                    if not os.path.isdir(model_path):
                        os.makedirs(model_path)

                    fluid.io.save_persistables(
                        executor=exe,
                        dirname=model_path,
                        main_program=main_program)
X
add ce  
xuezhong 已提交
477 478 479 480 481 482 483 484
                if args.enable_ce:  # For CE
                    print("kpis\ttrain_cost_card%d\t%f" %
                          (dev_count, total_loss / total_num))
                    if brc_data.dev_set is not None:
                        print("kpis\ttest_cost_card%d\t%f" %
                              (dev_count, eval_loss))
                    print("kpis\ttrain_duration_card%d\t%f" %
                          (dev_count, time_consumed))
Q
qiuxuezhong 已提交
485

X
xuezhong 已提交
486 487 488 489 490 491 492

def evaluate(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
493 494
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.devset)
X
xuezhong 已提交
495 496 497 498 499 500 501 502 503
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
504
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
505 506
                args.hidden_size, vocab, args)
            # initialize parameters
X
xuezhong 已提交
507 508 509 510 511 512 513 514
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

Q
qiuxuezhong 已提交
515 516 517 518 519 520 521 522 523
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

X
xuezhong 已提交
524
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
525 526
            eval_loss, bleu_rouge = validation(
                inference_program, avg_cost, s_probs, e_probs, feed_order,
X
xuezhong 已提交
527
                place, dev_count, vocab, brc_data, logger, args)
Q
qiuxuezhong 已提交
528 529 530 531 532 533
            logger.info('Dev eval loss {}'.format(eval_loss))
            logger.info('Dev eval result: {}'.format(bleu_rouge))
            logger.info('Predicted answers are saved to {}'.format(
                os.path.join(args.result_dir)))


X
xuezhong 已提交
534 535 536 537 538 539
def predict(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
540 541
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.testset)
X
xuezhong 已提交
542 543 544 545 546 547 548 549 550
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
551
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
552 553
                args.hidden_size, vocab, args)
            # initialize parameters
X
xuezhong 已提交
554 555 556 557 558 559 560 561
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

Q
qiuxuezhong 已提交
562 563 564 565 566 567 568 569 570
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

X
xuezhong 已提交
571
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
572
            eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
573 574
                inference_program, avg_cost, s_probs, e_probs, match,
                feed_order, place, dev_count, vocab, brc_data, logger, args)
Q
qiuxuezhong 已提交
575

X
xuezhong 已提交
576

X
xuezhong 已提交
577 578 579 580 581 582
def prepare(logger, args):
    """
    checks data, creates the directories, prepare the vocabulary and embeddings
    """
    logger.info('Checking the data files...')
    for data_path in args.trainset + args.devset + args.testset:
Q
qiuxuezhong 已提交
583 584
        assert os.path.exists(data_path), '{} file does not exist.'.format(
            data_path)
X
xuezhong 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    logger.info('Preparing the directories...')
    for dir_path in [args.vocab_dir, args.save_dir, args.result_dir]:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

    logger.info('Building vocabulary...')
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset, args.testset)
    vocab = Vocab(lower=True)
    for word in brc_data.word_iter('train'):
        vocab.add(word)

    unfiltered_vocab_size = vocab.size()
    vocab.filter_tokens_by_cnt(min_cnt=2)
    filtered_num = unfiltered_vocab_size - vocab.size()
Q
qiuxuezhong 已提交
600 601
    logger.info('After filter {} tokens, the final vocab size is {}'.format(
        filtered_num, vocab.size()))
X
xuezhong 已提交
602 603 604 605 606 607 608 609 610

    logger.info('Assigning embeddings...')
    vocab.randomly_init_embeddings(args.embed_size)

    logger.info('Saving vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
        pickle.dump(vocab, fout)

    logger.info('Done with preparing!')
X
xuezhong 已提交
611

Q
qiuxuezhong 已提交
612

X
xuezhong 已提交
613 614 615
if __name__ == '__main__':
    args = parse_args()

X
xuezhong 已提交
616 617 618
    if args.enable_ce:
        random.seed(args.random_seed)
        np.random.seed(args.random_seed)
X
xuezhong 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

    logger = logging.getLogger("brc")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    args = parse_args()
    logger.info('Running with args : {}'.format(args))
X
xuezhong 已提交
636 637
    if args.prepare:
        prepare(logger, args)
X
xuezhong 已提交
638 639 640 641 642 643
    if args.train:
        train(logger, args)
    if args.evaluate:
        evaluate(logger, args)
    if args.predict:
        predict(logger, args)