run.py 24.5 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import json
X
xuezhong 已提交
24
import six
X
xuezhong 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
sys.path.append('..')

from args import *
import rc_model
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
X
xuezhong 已提交
45
from vocab import Vocab
X
xuezhong 已提交
46

Q
qiuxuezhong 已提交
47

X
xuezhong 已提交
48 49
def prepare_batch_input(insts, args):
    batch_size = len(insts['raw_data'])
X
xuezhong 已提交
50 51 52 53
    inst_num = len(insts['passage_num'])
    if batch_size != inst_num:
        print("data error %d, %d" % (batch_size, inst_num))
        return None
X
xuezhong 已提交
54 55
    new_insts = []

X
xuezhong 已提交
56
    passage_idx = 0
X
xuezhong 已提交
57
    for i in range(batch_size):
X
xuezhong 已提交
58
        p_len = 0
X
xuezhong 已提交
59 60 61
        p_id = []
        p_ids = []
        q_ids = []
X
xuezhong 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
        q_id = []
        p_id_r = []
        p_ids_r = []
        q_ids_r = []
        q_id_r = []

        for j in range(insts['passage_num'][i]):
            p_ids.append(insts['passage_token_ids'][passage_idx + j])
            p_id = p_id + insts['passage_token_ids'][passage_idx + j]
            q_ids.append(insts['question_token_ids'][passage_idx + j])
            q_id = q_id + insts['question_token_ids'][passage_idx + j]

        passage_idx += insts['passage_num'][i]
X
xuezhong 已提交
75 76 77 78 79 80 81 82 83 84
        p_len = len(p_id)

        def _get_label(idx, ref_len):
            ret = [0.0] * ref_len
            if idx >= 0 and idx < ref_len:
                ret[idx] = 1.0
            return [[x] for x in ret]

        start_label = _get_label(insts['start_id'][i], p_len)
        end_label = _get_label(insts['end_id'][i], p_len)
X
xuezhong 已提交
85
        new_inst = [q_ids, start_label, end_label, p_ids, q_id]
X
xuezhong 已提交
86 87 88 89
        new_insts.append(new_inst)
    return new_insts


X
xuezhong 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def batch_reader(batch_list, args):
    res = []
    for batch in batch_list:
        res.append(prepare_batch_input(batch, args))
    return res


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
                    data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                    for i in range(count)
                ]

    return __impl__


X
xuezhong 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def LodTensor_Array(lod_tensor):
    lod = lod_tensor.lod()
    array = np.array(lod_tensor)
    new_array = []
    for i in range(len(lod[0]) - 1):
        new_array.append(array[lod[0][i]:lod[0][i + 1]])
    return new_array


def print_para(train_prog, train_exe, logger, args):
    if args.para_print:
        param_list = train_prog.block(0).all_parameters()
        param_name_list = [p.name for p in param_list]
        num_sum = 0
        for p_name in param_name_list:
            p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
            param_num = np.prod(p_array.shape)
            num_sum = num_sum + param_num
Q
qiuxuezhong 已提交
143 144 145 146 147
            logger.info(
                "param: {0},  mean={1}  max={2}  min={3}  num={4} {5}".format(
                    p_name,
                    p_array.mean(),
                    p_array.max(), p_array.min(), p_array.shape, param_num))
X
xuezhong 已提交
148 149 150
        logger.info("total param num: {0}".format(num_sum))


X
xuezhong 已提交
151
def find_best_answer_for_passage(start_probs, end_probs, passage_len):
X
xuezhong 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    """
    Finds the best answer with the maximum start_prob * end_prob from a single passage
    """
    if passage_len is None:
        passage_len = len(start_probs)
    else:
        passage_len = min(len(start_probs), passage_len)
    best_start, best_end, max_prob = -1, -1, 0
    for start_idx in range(passage_len):
        for ans_len in range(args.max_a_len):
            end_idx = start_idx + ans_len
            if end_idx >= passage_len:
                continue
            prob = start_probs[start_idx] * end_probs[end_idx]
            if prob > max_prob:
                best_start = start_idx
                best_end = end_idx
                max_prob = prob
    return (best_start, best_end), max_prob


X
xuezhong 已提交
173
def find_best_answer_for_inst(sample, start_prob, end_prob, inst_lod):
X
xuezhong 已提交
174 175 176 177 178 179 180 181
    """
    Finds the best answer for a sample given start_prob and end_prob for each position.
    This will call find_best_answer_for_passage because there are multiple passages in a sample
    """
    best_p_idx, best_span, best_score = None, None, 0
    for p_idx, passage in enumerate(sample['passages']):
        if p_idx >= args.max_p_num:
            continue
X
xuezhong 已提交
182 183 184 185 186 187
        if len(start_prob) != len(end_prob):
            logger.info('error: {}'.format(sample['question']))
            continue
        passage_start = inst_lod[p_idx] - inst_lod[0]
        passage_end = inst_lod[p_idx + 1] - inst_lod[0]
        passage_len = passage_end - passage_start
X
xuezhong 已提交
188 189
        passage_len = min(args.max_p_len, len(passage['passage_tokens']))
        answer_span, score = find_best_answer_for_passage(
X
xuezhong 已提交
190 191
            start_prob[passage_start:passage_end],
            end_prob[passage_start:passage_end], passage_len)
X
xuezhong 已提交
192 193 194 195 196 197 198 199 200
        if score > best_score:
            best_score = score
            best_p_idx = p_idx
            best_span = answer_span
    if best_p_idx is None or best_span is None:
        best_answer = ''
    else:
        best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
            best_span[0]:best_span[1] + 1])
X
xuezhong 已提交
201
    return best_answer, best_span
X
xuezhong 已提交
202 203


X
xuezhong 已提交
204 205
def validation(inference_program, avg_cost, s_probs, e_probs, match, feed_order,
               place, dev_count, vocab, brc_data, logger, args):
X
xuezhong 已提交
206 207 208 209
    """
        
    """
    parallel_executor = fluid.ParallelExecutor(
Q
qiuxuezhong 已提交
210 211 212 213
        main_program=inference_program,
        use_cuda=bool(args.use_gpu),
        loss_name=avg_cost.name)
    print_para(inference_program, parallel_executor, logger, args)
X
xuezhong 已提交
214 215 216 217

    # Use test set as validation each pass
    total_loss = 0.0
    count = 0
X
xuezhong 已提交
218 219
    n_batch_cnt = 0
    n_batch_loss = 0.0
X
xuezhong 已提交
220 221 222 223 224 225 226
    pred_answers, ref_answers = [], []
    val_feed_list = [
        inference_program.global_block().var(var_name)
        for var_name in feed_order
    ]
    val_feeder = fluid.DataFeeder(val_feed_list, place)
    pad_id = vocab.get_id(vocab.pad_token)
X
xuezhong 已提交
227 228
    dev_reader = lambda:brc_data.gen_mini_batches('dev', args.batch_size, pad_id, shuffle=False)
    dev_reader = read_multiple(dev_reader, dev_count)
X
xuezhong 已提交
229

X
xuezhong 已提交
230 231
    for batch_id, batch_list in enumerate(dev_reader(), 1):
        feed_data = batch_reader(batch_list, args)
X
xuezhong 已提交
232
        val_fetch_outs = parallel_executor.run(
X
xuezhong 已提交
233 234
            feed=list(val_feeder.feed_parallel(feed_data, dev_count)),
            fetch_list=[avg_cost.name, s_probs.name, e_probs.name, match.name],
Q
qiuxuezhong 已提交
235
            return_numpy=False)
X
xuezhong 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        total_loss += np.array(val_fetch_outs[0]).sum()
        start_probs_m = LodTensor_Array(val_fetch_outs[1])
        end_probs_m = LodTensor_Array(val_fetch_outs[2])
        match_lod = val_fetch_outs[3].lod()
        count += len(np.array(val_fetch_outs[0]))

        n_batch_cnt += len(np.array(val_fetch_outs[0]))
        n_batch_loss += np.array(val_fetch_outs[0]).sum()
        log_every_n_batch = args.log_interval
        if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
            logger.info('Average dev loss from batch {} to {} is {}'.format(
                batch_id - log_every_n_batch + 1, batch_id, "%.10f" % (
                    n_batch_loss / n_batch_cnt)))
            n_batch_loss = 0.0
            n_batch_cnt = 0

        for idx, batch in enumerate(batch_list):
            #one batch
            batch_size = len(batch['raw_data'])
            batch_range = match_lod[0][idx * batch_size:(idx + 1) * batch_size +
                                       1]
            batch_lod = [[batch_range[x], batch_range[x + 1]]
                         for x in range(len(batch_range[:-1]))]
            start_prob_batch = start_probs_m[idx * batch_size:(idx + 1) *
                                             batch_size]
            end_prob_batch = end_probs_m[idx * batch_size:(idx + 1) *
                                         batch_size]
            for sample, start_prob_inst, end_prob_inst, inst_range in zip(
                    batch['raw_data'], start_prob_batch, end_prob_batch,
                    batch_lod):
                #one instance
                inst_lod = match_lod[1][inst_range[0]:inst_range[1] + 1]
                best_answer, best_span = find_best_answer_for_inst(
                    sample, start_prob_inst, end_prob_inst, inst_lod)
                pred = {
X
xuezhong 已提交
271 272
                    'question_id': sample['question_id'],
                    'question_type': sample['question_type'],
X
xuezhong 已提交
273
                    'answers': [best_answer],
X
xuezhong 已提交
274
                    'entity_answers': [[]],
X
xuezhong 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                    'yesno_answers': [best_span]
                }
                pred_answers.append(pred)
                if 'answers' in sample:
                    ref = {
                        'question_id': sample['question_id'],
                        'question_type': sample['question_type'],
                        'answers': sample['answers'],
                        'entity_answers': [[]],
                        'yesno_answers': []
                    }
                    ref_answers.append(ref)

    result_dir = args.result_dir
    result_prefix = args.result_name
    if result_dir is not None and result_prefix is not None:
X
xuezhong 已提交
291 292
        if not os.path.exists(args.result_dir):
            os.makedirs(args.result_dir)
X
xuezhong 已提交
293
        result_file = os.path.join(result_dir, result_prefix + 'json')
Q
qiuxuezhong 已提交
294 295 296
        with open(result_file, 'w') as fout:
            for pred_answer in pred_answers:
                fout.write(json.dumps(pred_answer, ensure_ascii=False) + '\n')
X
xuezhong 已提交
297
        logger.info('Saving {} results to {}'.format(result_prefix,
Q
qiuxuezhong 已提交
298
                                                     result_file))
X
xuezhong 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

    ave_loss = 1.0 * total_loss / count
    # compute the bleu and rouge scores if reference answers is provided
    if len(ref_answers) > 0:
        pred_dict, ref_dict = {}, {}
        for pred, ref in zip(pred_answers, ref_answers):
            question_id = ref['question_id']
            if len(ref['answers']) > 0:
                pred_dict[question_id] = normalize(pred['answers'])
                ref_dict[question_id] = normalize(ref['answers'])
        bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
    else:
        bleu_rouge = None
    return ave_loss, bleu_rouge

Q
qiuxuezhong 已提交
314

X
xuezhong 已提交
315 316 317 318 319 320 321 322 323
def l2_loss(train_prog):
    param_list = train_prog.block(0).all_parameters()
    para_sum = []
    for para in param_list:
        para_mul = fluid.layers.elementwise_mul(x=para, y=para, axis=0)
        para_sum.append(fluid.layers.reduce_sum(input=para_mul, dim=None))
    return fluid.layers.sums(para_sum) * 0.5


X
xuezhong 已提交
324 325 326
def train(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
X
xuezhong 已提交
327 328 329 330
        if six.PY2:
            vocab = pickle.load(fin)
        else:
            vocab = pickle.load(fin, encoding='bytes')
X
xuezhong 已提交
331 332 333 334 335 336 337 338
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

X
xuezhong 已提交
339 340 341 342 343 344 345
    if not args.use_gpu:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

X
xuezhong 已提交
346 347 348
    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
Q
qiuxuezhong 已提交
349 350
    main_program.random_seed = args.random_seed
    startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
351 352
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
353
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
354
                args.hidden_size, vocab, args)
X
xuezhong 已提交
355 356 357
            # clone from default main program and use it as the validation program
            inference_program = main_program.clone(for_test=True)

Q
qiuxuezhong 已提交
358 359 360
            # build optimizer
            if args.optim == 'sgd':
                optimizer = fluid.optimizer.SGD(
X
xuezhong 已提交
361
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
362 363
            elif args.optim == 'adam':
                optimizer = fluid.optimizer.Adam(
X
xuezhong 已提交
364
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
365 366
            elif args.optim == 'rprop':
                optimizer = fluid.optimizer.RMSPropOptimizer(
X
xuezhong 已提交
367
                    learning_rate=args.learning_rate)
Q
qiuxuezhong 已提交
368 369 370
            else:
                logger.error('Unsupported optimizer: {}'.format(args.optim))
                exit(-1)
X
xuezhong 已提交
371 372 373 374
            if args.weight_decay > 0.0:
                avg_cost_wd = avg_cost + args.weight_decay * l2_loss(
                    main_program)
            optimizer.minimize(avg_cost_wd)
Q
qiuxuezhong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

            # initialize parameters
            place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                exe.run(startup_prog)
                embedding_para = fluid.global_scope().find_var(
                    'embedding_para').get_tensor()
                embedding_para.set(vocab.embeddings.astype(np.float32), place)

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)

            logger.info('Training the model...')
            parallel_executor = fluid.ParallelExecutor(
                main_program=main_program,
                use_cuda=bool(args.use_gpu),
                loss_name=avg_cost.name)
            print_para(main_program, parallel_executor, logger, args)

            for pass_id in range(1, args.pass_num + 1):
                pass_start_time = time.time()
                pad_id = vocab.get_id(vocab.pad_token)
X
xuezhong 已提交
406 407
                train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=False)
                train_reader = read_multiple(train_reader, dev_count)
Q
qiuxuezhong 已提交
408 409
                log_every_n_batch, n_batch_loss = args.log_interval, 0
                total_num, total_loss = 0, 0
X
xuezhong 已提交
410 411
                for batch_id, batch_list in enumerate(train_reader(), 1):
                    feed_data = batch_reader(batch_list, args)
Q
qiuxuezhong 已提交
412
                    fetch_outs = parallel_executor.run(
X
xuezhong 已提交
413
                        feed=list(feeder.feed_parallel(feed_data, dev_count)),
X
xuezhong 已提交
414
                        fetch_list=[avg_cost_wd.name],
Q
qiuxuezhong 已提交
415
                        return_numpy=False)
X
xuezhong 已提交
416 417
                    cost_train = np.array(fetch_outs[0]).mean()
                    total_num += args.batch_size * dev_count
Q
qiuxuezhong 已提交
418
                    n_batch_loss += cost_train
X
xuezhong 已提交
419 420
                    total_loss += cost_train * args.batch_size * dev_count

Q
qiuxuezhong 已提交
421 422 423 424 425 426 427 428 429
                    if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
                        print_para(main_program, parallel_executor, logger,
                                   args)
                        logger.info(
                            'Average loss from batch {} to {} is {}'.format(
                                batch_id - log_every_n_batch + 1, batch_id,
                                "%.10f" % (n_batch_loss / log_every_n_batch)))
                        n_batch_loss = 0
                    if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
X
xuezhong 已提交
430 431 432 433 434 435 436 437
                        if brc_data.dev_set is not None:
                            eval_loss, bleu_rouge = validation(
                                inference_program, avg_cost, s_probs, e_probs,
                                match, feed_order, place, dev_count, vocab,
                                brc_data, logger, args)
                            logger.info('Dev eval loss {}'.format(eval_loss))
                            logger.info('Dev eval result: {}'.format(
                                bleu_rouge))
Q
qiuxuezhong 已提交
438 439 440 441 442 443
                pass_end_time = time.time()

                logger.info('Evaluating the model after epoch {}'.format(
                    pass_id))
                if brc_data.dev_set is not None:
                    eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
444 445 446
                        inference_program, avg_cost, s_probs, e_probs, match,
                        feed_order, place, dev_count, vocab, brc_data, logger,
                        args)
Q
qiuxuezhong 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                    logger.info('Dev eval loss {}'.format(eval_loss))
                    logger.info('Dev eval result: {}'.format(bleu_rouge))
                else:
                    logger.warning(
                        'No dev set is loaded for evaluation in the dataset!')
                time_consumed = pass_end_time - pass_start_time
                logger.info('Average train loss for epoch {} is {}'.format(
                    pass_id, "%.10f" % (1.0 * total_loss / total_num)))

                if pass_id % args.save_interval == 0:
                    model_path = os.path.join(args.save_dir, str(pass_id))
                    if not os.path.isdir(model_path):
                        os.makedirs(model_path)

                    fluid.io.save_persistables(
                        executor=exe,
                        dirname=model_path,
                        main_program=main_program)

X
xuezhong 已提交
466 467 468 469 470 471 472

def evaluate(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
473 474
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.devset)
X
xuezhong 已提交
475 476 477 478 479 480 481
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
Q
qiuxuezhong 已提交
482 483
    main_program.random_seed = args.random_seed
    startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
484 485
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
486
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
487 488
                args.hidden_size, vocab, args)
            # initialize parameters
X
xuezhong 已提交
489 490 491 492 493 494 495 496
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

Q
qiuxuezhong 已提交
497 498 499 500 501 502 503 504 505
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

X
xuezhong 已提交
506
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
507 508
            eval_loss, bleu_rouge = validation(
                inference_program, avg_cost, s_probs, e_probs, feed_order,
X
xuezhong 已提交
509
                place, dev_count, vocab, brc_data, logger, args)
Q
qiuxuezhong 已提交
510 511 512 513 514 515
            logger.info('Dev eval loss {}'.format(eval_loss))
            logger.info('Dev eval result: {}'.format(bleu_rouge))
            logger.info('Predicted answers are saved to {}'.format(
                os.path.join(args.result_dir)))


X
xuezhong 已提交
516 517 518 519 520 521
def predict(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
522 523
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.testset)
X
xuezhong 已提交
524 525 526 527 528 529 530
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
Q
qiuxuezhong 已提交
531 532
    main_program.random_seed = args.random_seed
    startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
533 534
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
X
xuezhong 已提交
535
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
536 537
                args.hidden_size, vocab, args)
            # initialize parameters
X
xuezhong 已提交
538 539 540 541 542 543 544 545
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

Q
qiuxuezhong 已提交
546 547 548 549 550 551 552 553 554
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

X
xuezhong 已提交
555
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
556
            eval_loss, bleu_rouge = validation(
X
xuezhong 已提交
557 558
                inference_program, avg_cost, s_probs, e_probs, match,
                feed_order, place, dev_count, vocab, brc_data, logger, args)
Q
qiuxuezhong 已提交
559

X
xuezhong 已提交
560

X
xuezhong 已提交
561 562 563 564 565 566
def prepare(logger, args):
    """
    checks data, creates the directories, prepare the vocabulary and embeddings
    """
    logger.info('Checking the data files...')
    for data_path in args.trainset + args.devset + args.testset:
Q
qiuxuezhong 已提交
567 568
        assert os.path.exists(data_path), '{} file does not exist.'.format(
            data_path)
X
xuezhong 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    logger.info('Preparing the directories...')
    for dir_path in [args.vocab_dir, args.save_dir, args.result_dir]:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

    logger.info('Building vocabulary...')
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset, args.testset)
    vocab = Vocab(lower=True)
    for word in brc_data.word_iter('train'):
        vocab.add(word)

    unfiltered_vocab_size = vocab.size()
    vocab.filter_tokens_by_cnt(min_cnt=2)
    filtered_num = unfiltered_vocab_size - vocab.size()
Q
qiuxuezhong 已提交
584 585
    logger.info('After filter {} tokens, the final vocab size is {}'.format(
        filtered_num, vocab.size()))
X
xuezhong 已提交
586 587 588 589 590 591 592 593 594

    logger.info('Assigning embeddings...')
    vocab.randomly_init_embeddings(args.embed_size)

    logger.info('Saving vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
        pickle.dump(vocab, fout)

    logger.info('Done with preparing!')
X
xuezhong 已提交
595

Q
qiuxuezhong 已提交
596

X
xuezhong 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
if __name__ == '__main__':
    args = parse_args()

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)

    logger = logging.getLogger("brc")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    args = parse_args()
    logger.info('Running with args : {}'.format(args))
X
xuezhong 已提交
619 620
    if args.prepare:
        prepare(logger, args)
X
xuezhong 已提交
621 622 623 624 625 626
    if args.train:
        train(logger, args)
    if args.evaluate:
        evaluate(logger, args)
    if args.predict:
        predict(logger, args)