mnist_dygraph.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
from __future__ import print_function
16 17
import argparse
import ast
M
minqiyang 已提交
18
import numpy as np
19 20
from PIL import Image
import os
M
minqiyang 已提交
21 22
import paddle
import paddle.fluid as fluid
23
from paddle.fluid.optimizer import AdamOptimizer
M
minqiyang 已提交
24 25 26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable


28 29 30 31 32 33 34 35 36 37 38
def parse_args():
    parser = argparse.ArgumentParser("Training for Mnist.")
    parser.add_argument(
        "--use_data_parallel",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to shuffle instances in each pass.")
    args = parser.parse_args()
    return args


M
minqiyang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
D
Divano 已提交
71
            act=act,
M
minqiyang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            self.full_name(), 1, 20, 5, 2, 2, act="relu")

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            self.full_name(), 20, 50, 5, 2, 2, act="relu")

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

109
    def forward(self, inputs, label=None):
M
minqiyang 已提交
110 111 112
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
113 114 115 116 117 118 119
        if label is not None:
            acc = fluid.layers.accuracy(input=x, label=label)
            return x, acc
        else:
            return x


120
def test_mnist(reader, model, batch_size):
121 122 123
    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(reader()):
124 125
        dy_x_data = np.array([x[0].reshape(1, 28, 28)
                              for x in data]).astype('float32')
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        y_data = np.array(
            [x[1] for x in data]).astype('int64').reshape(batch_size, 1)

        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True
        prediction, acc = model(img, label)
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_loss = fluid.layers.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))

        # get test acc and loss
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    return avg_loss_val_mean, acc_val_mean
M
minqiyang 已提交
143 144


145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
def inference_mnist():
    with fluid.dygraph.guard():
        mnist_infer = MNIST("mnist")
        # load checkpoint
        mnist_infer.load_dict(fluid.dygraph.load_persistables("save_dir"))
        print("checkpoint loaded")

        # start evaluate mode
        mnist_infer.eval()

        def load_image(file):
            im = Image.open(file).convert('L')
            im = im.resize((28, 28), Image.ANTIALIAS)
            im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
            im = im / 255.0 * 2.0 - 1.0
            return im

        cur_dir = os.path.dirname(os.path.realpath(__file__))
        tensor_img = load_image(cur_dir + '/image/infer_3.png')

        results = mnist_infer(to_variable(tensor_img))
        lab = np.argsort(results.numpy())
        print("Inference result of image/infer_3.png is: %d" % lab[0][-1])


def train_mnist(args):
171 172
    epoch_num = 5
    BATCH_SIZE = 64
M
minqiyang 已提交
173

174 175 176 177 178
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()
M
minqiyang 已提交
179
        mnist = MNIST("mnist")
180
        adam = AdamOptimizer(learning_rate=0.001)
181 182 183 184 185 186 187 188 189 190 191 192
        if args.use_data_parallel:
            mnist = fluid.dygraph.parallel.DataParallel(mnist, strategy)

        if args.use_data_parallel:
            train_reader = fluid.contrib.reader.distributed_sampler(
                paddle.dataset.mnist.train(), batch_size=BATCH_SIZE)
        else:
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(),
                batch_size=BATCH_SIZE,
                drop_last=True)

193 194
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=BATCH_SIZE, drop_last=True)
195

M
minqiyang 已提交
196 197
        for epoch in range(epoch_num):
            for batch_id, data in enumerate(train_reader()):
198 199
                dy_x_data = np.array([x[0].reshape(1, 28, 28)
                                      for x in data]).astype('float32')
M
minqiyang 已提交
200
                y_data = np.array(
201
                    [x[1] for x in data]).astype('int64').reshape(-1, 1)
M
minqiyang 已提交
202 203 204 205 206

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label.stop_gradient = True

207 208
                cost, acc = mnist(img, label)

M
minqiyang 已提交
209 210
                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)
211 212 213 214 215 216 217 218

                if args.use_data_parallel:
                    avg_loss = mnist.scale_loss(avg_loss)
                    avg_loss.backward()
                    mnist.apply_collective_grads()
                else:
                    avg_loss.backward()

219 220
                adam.minimize(avg_loss)
                # save checkpoint
M
minqiyang 已提交
221
                mnist.clear_gradients()
222
                if batch_id % 100 == 0:
223 224
                    print("Loss at epoch {} step {}: {:}".format(
                        epoch, batch_id, avg_loss.numpy()))
225 226

            mnist.eval()
227
            test_cost, test_acc = test_mnist(test_reader, mnist, BATCH_SIZE)
228
            mnist.train()
229 230
            print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(
                epoch, test_cost, test_acc))
M
minqiyang 已提交
231

232 233 234
        fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
        print("checkpoint saved")

235
        inference_mnist()
M
minqiyang 已提交
236 237 238


if __name__ == '__main__':
239 240
    args = parse_args()
    train_mnist(args)