Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
dc5d09bd
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dc5d09bd
编写于
4月 22, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dygraph mnist
上级
ba609980
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
178 addition
and
0 deletion
+178
-0
dygraph/mnist/README_cn.md
dygraph/mnist/README_cn.md
+28
-0
dygraph/mnist/mnist_dygraph.py
dygraph/mnist/mnist_dygraph.py
+137
-0
fluid/PaddleCV/ocr_recognition/attention_model.py
fluid/PaddleCV/ocr_recognition/attention_model.py
+9
-0
fluid/PaddleCV/ocr_recognition/train.py
fluid/PaddleCV/ocr_recognition/train.py
+4
-0
未找到文件。
dygraph/mnist/README_cn.md
0 → 100644
浏览文件 @
dc5d09bd
# MNIST
当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 MNIST 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,标签则对应着0~9的10个数字。每张图片都经过了大小归一化和居中处理。
本页将介绍如何使用PaddlePaddle在DyGraph模式下实现MNIST,包括
[
安装
](
#installation
)
、
[
训练
](
#training-a-model
)
、
[
模型评估
](
#evaluation
)
。
---
## 内容
-
[
安装
](
#installation
)
-
[
训练
](
#training-a-model
)
-
[
模型评估
](
#evaluation
)
## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v1.4.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据安装文档中的说明来更新PaddlePaddle。
## 训练
教程中使用
`paddle.dataset.mnist`
数据集作为训练数据,可以通过如下的方式启动训练:
```
env CUDA_VISIBLE_DEVICES=0 python train.py
```
## 输出
执行训练开始后,将得到类似如下的输出。
```
batch_id 0,loss 2.1786134243
batch_id 10,loss 0.898496925831
batch_id 20,loss 1.32524681091
...
```
dygraph/mnist/mnist_dygraph.py
0 → 100644
浏览文件 @
dc5d09bd
from
__future__
import
print_function
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.dygraph.base
import
to_variable
import
time
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
"""
Conv Pool Layer
"""
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
1
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
(
name_scope
)
self
.
_conv2d
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
self
.
full_name
(),
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
MNIST
(
fluid
.
dygraph
.
Layer
):
"""
MNIST model
"""
def
__init__
(
self
,
name_scope
):
super
(
MNIST
,
self
).
__init__
(
name_scope
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
full_name
(),
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
full_name
(),
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
self
.
full_name
(),
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
self
.
_fc
(
x
)
return
x
def
train_mnist
():
seed
=
90
epoch_num
=
10
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
dy_out
=
avg_loss
.
numpy
()
print
(
"batch id %d, loss %f"
%
(
batch_id
,
dy_out
))
if
__name__
==
'__main__'
:
train_mnist
()
fluid/PaddleCV/ocr_recognition/attention_model.py
浏览文件 @
dc5d09bd
...
...
@@ -145,6 +145,9 @@ def gru_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
decoder_inputs
=
fc_1
+
fc_2
h
,
_
,
_
=
fluid
.
layers
.
gru_unit
(
input
=
decoder_inputs
,
hidden
=
hidden_mem
,
size
=
decoder_size
*
3
)
print
(
decoder_inputs
.
shape
)
print
(
hidden_mem
.
shape
)
print
(
decoder_size
)
rnn
.
update_memory
(
hidden_mem
,
h
)
out
=
fluid
.
layers
.
fc
(
input
=
h
,
size
=
num_classes
+
2
,
...
...
@@ -156,6 +159,8 @@ def gru_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
def
attention_train_net
(
args
,
data_shape
,
num_classes
):
print
(
"xxx"
)
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label_in
=
fluid
.
layers
.
data
(
name
=
'label_in'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
...
...
@@ -293,6 +298,10 @@ def attention_infer(images, num_classes, use_cudnn=True):
input
=
decoder_inputs
,
hidden
=
pre_state_expanded
,
size
=
decoder_size
*
3
)
print
(
decoder_inputs
.
shape
)
print
(
pre_state_expanded
.
shape
)
import
sys
sys
.
stdout
.
flush
()
current_state_with_lod
=
fluid
.
layers
.
lod_reset
(
x
=
current_state
,
y
=
pre_score
)
...
...
fluid/PaddleCV/ocr_recognition/train.py
浏览文件 @
dc5d09bd
...
...
@@ -51,6 +51,10 @@ def train(args):
train_net
=
attention_train_net
get_feeder_data
=
get_attention_feeder_data
print
(
"train net"
)
import
sys
sys
.
stdout
.
flush
()
num_classes
=
None
num_classes
=
data_reader
.
num_classes
(
)
if
num_classes
is
None
else
num_classes
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录