utils.py 11.7 KB
Newer Older
王肖 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
# -*- encoding:utf-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
SimNet utilities.
"""
import argparse
import time
import sys
import re
import os
import six
import numpy as np
import logging
import logging.handlers
import paddle.fluid as fluid
import io
"""
******functions for file processing******
"""

def load_vocab(file_path):
    """
    load the given vocabulary
    """
    vocab = {}
    f = io.open(file_path, "r", encoding="utf8")
    for line in f:
        items = line.strip("\n").split("\t")
        if items[0] not in vocab:
            vocab[items[0]] = int(items[1])
    vocab["<unk>"] = 0
    return vocab


def get_result_file(args):
    """
    Get Result File
    Args:
      conf_dict: Input path config
      samples_file_path: Data path of real training
      predictions_file_path: Prediction results path
    Returns:
      result_file: merge sample and predict result

    """
    with io.open(args.test_data_dir, "r", encoding="utf8") as test_file:
        with io.open("predictions.txt", "r", encoding="utf8") as predictions_file:
            with io.open(args.test_result_path, "w", encoding="utf8") as test_result_file:
                test_datas = [line.strip("\n") for line in test_file]
                predictions = [line.strip("\n") for line in predictions_file]
                for test_data, prediction in zip(test_datas, predictions):
                    test_result_file.write(test_data + "\t" + prediction + "\n")
    os.remove("predictions.txt")


"""
******functions for string processing******
"""


def pattern_match(pattern, line):
    """
    Check whether a string is matched
    Args:
      pattern: mathing pattern
      line : input string
    Returns:
      True/False
    """
    if re.match(pattern, line):
        return True
    else:
        return False


"""
******functions for parameter processing******
"""


def print_progress(task_name, percentage, style=0):
    """
    Print progress bar
    Args:
      task_name: The name of the current task
      percentage: Current progress
      style: Progress bar form
    """
    styles = ['#', '█']
    mark = styles[style] * percentage
    mark += ' ' * (100 - percentage)
    status = '%d%%' % percentage if percentage < 100 else 'Finished'
    sys.stdout.write('%+20s [%s] %s\r' % (task_name, mark, status))
    sys.stdout.flush()
    time.sleep(0.002)


def display_args(name, args):
    """
    Print parameter information
    Args:
      name: logger instance name
      args: Input parameter dictionary
    """
    logger = logging.getLogger(name)
    logger.info("The arguments passed by command line is :")
    for k, v in sorted(v for v in vars(args).items()):
        logger.info("{}:\t{}".format(k, v))


def import_class(module_path, module_name, class_name):
    """
    Load class dynamically
    Args:
      module_path: The current path of the module
      module_name: The module name
      class_name: The name of class in the import module
    Return:
      Return the attribute value of the class object
    """
    if module_path:
        sys.path.append(module_path)
    module = __import__(module_name)
    return getattr(module, class_name)


def str2bool(v):
    """
    String to Boolean
    """
    # because argparse does not support to parse "true, False" as python
    # boolean directly
    return v.lower() in ("true", "t", "1")


class ArgumentGroup(object):
    """
    Argument Class
    """

    def __init__(self, parser, title, des):
        self._group = parser.add_argument_group(title=title, description=des)

    def add_arg(self, name, type, default, help, **kwargs):
        """
        Add argument
        """
        type = str2bool if type == bool else type
        self._group.add_argument(
            "--" + name,
            default=default,
            type=type,
            help=help + ' Default: %(default)s.',
            **kwargs)

class ArgConfig(object):
    def __init__(self):
        parser = argparse.ArgumentParser()

        model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
        model_g.add_arg("config_path", str, None, "Path to the json file for EmoTect model config.")
        model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
        model_g.add_arg("output_dir", str, None, "Directory path to save checkpoints")
        model_g.add_arg("task_mode", str, None, "task mode: pairwise or pointwise")

178

王肖 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        train_g = ArgumentGroup(parser, "training", "training options.")
        train_g.add_arg("epoch", int, 10, "Number of epoches for training.")
        train_g.add_arg("save_steps", int, 200, "The steps interval to save checkpoints.")
        train_g.add_arg("validation_steps", int, 100, "The steps interval to evaluate model performance.")

        log_g = ArgumentGroup(parser, "logging", "logging related")
        log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
        log_g.add_arg("verbose_result", bool, True, "Whether to output verbose result.")
        log_g.add_arg("test_result_path", str, "test_result", "Directory path to test result.")
        log_g.add_arg("infer_result_path", str, "infer_result", "Directory path to infer result.")

        data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
        data_g.add_arg("train_data_dir", str, None, "Directory path to training data.")
        data_g.add_arg("valid_data_dir", str, None, "Directory path to valid data.")
        data_g.add_arg("test_data_dir", str, None, "Directory path to testing data.")
        data_g.add_arg("infer_data_dir", str, None, "Directory path to infer data.")
        data_g.add_arg("vocab_path", str, None, "Vocabulary path.")
        data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training.")
197 198
        data_g.add_arg("seq_len", int, 32, "The length of each sentence.")

王肖 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

        run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
        run_type_g.add_arg("use_cuda", bool, False, "If set, use GPU for training.")
        run_type_g.add_arg("task_name", str, None, "The name of task to perform sentiment classification.")
        run_type_g.add_arg("do_train", bool, False, "Whether to perform training.")
        run_type_g.add_arg("do_valid", bool, False, "Whether to perform dev.")
        run_type_g.add_arg("do_test", bool, False, "Whether to perform testing.")
        run_type_g.add_arg("do_infer", bool, False, "Whether to perform inference.")
        run_type_g.add_arg("compute_accuracy", bool, False, "Whether to compute accuracy.")
        run_type_g.add_arg("lamda", float, 0.91, "When task_mode is pairwise, lamda is the threshold for calculating the accuracy.")

        custom_g = ArgumentGroup(parser, "customize", "customized options.")
        self.custom_g = custom_g

        parser.add_argument('--enable_ce',action='store_true',help='If set, run the task with continuous evaluation logs.')

        self.parser = parser

    def add_arg(self, name, dtype, default, descrip):
        self.custom_g.add_arg(name, dtype, default, descrip)

    def build_conf(self):
        return self.parser.parse_args()


def print_arguments(args):
    """
    Print Arguments
    """
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(six.iteritems(vars(args))):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def init_log(
        log_path,
        level=logging.INFO,
        when="D",
        backup=7,
        format="%(levelname)s: %(asctime)s - %(filename)s:%(lineno)d * %(thread)d %(message)s",
        datefmt=None):
    """
    init_log - initialize log module

    Args:
      log_path      - Log file path prefix.
                      Log data will go to two files: log_path.log and log_path.log.wf
                      Any non-exist parent directories will be created automatically
      level         - msg above the level will be displayed
                      DEBUG < INFO < WARNING < ERROR < CRITICAL
                      the default value is logging.INFO
      when          - how to split the log file by time interval
                      'S' : Seconds
                      'M' : Minutes
                      'H' : Hours
                      'D' : Days
                      'W' : Week day
                      default value: 'D'
      format        - format of the log
                      default format:
                      %(levelname)s: %(asctime)s: %(filename)s:%(lineno)d * %(thread)d %(message)s
                      INFO: 12-09 18:02:42: log.py:40 * 139814749787872 HELLO WORLD
      backup        - how many backup file to keep
                      default value: 7

    Raises:
        OSError: fail to create log directories
        IOError: fail to open log file
    """
    formatter = logging.Formatter(format, datefmt)
    logger = logging.getLogger()
    logger.setLevel(level)

    # console Handler
    consoleHandler = logging.StreamHandler()
    consoleHandler.setLevel(logging.DEBUG)
    logger.addHandler(consoleHandler)

    dir = os.path.dirname(log_path)
    if not os.path.isdir(dir):
        os.makedirs(dir)

    handler = logging.handlers.TimedRotatingFileHandler(
        log_path + ".log", when=when, backupCount=backup)
    handler.setLevel(level)
    handler.setFormatter(formatter)
    logger.addHandler(handler)

    handler = logging.handlers.TimedRotatingFileHandler(
        log_path + ".log.wf", when=when, backupCount=backup)
    handler.setLevel(logging.WARNING)
    handler.setFormatter(formatter)
    logger.addHandler(handler)


def set_level(level):
    """
    Reak-time set log level
    """
    logger = logging.getLogger()
    logger.setLevel(level)
    logging.info('log level is set to : %d' % level)


def get_level():
    """
    get Real-time log level
    """
    logger = logging.getLogger()
    return logger.level


def get_accuracy(preds, labels, mode, lamda=0.958):
    """
    compute accuracy
    """
    if mode == "pairwise":
        preds = np.array(list(map(lambda x: 1 if x[1] >= lamda else 0, preds)))
    else:
        preds = np.array(list(map(lambda x: np.argmax(x), preds)))
    labels = np.squeeze(labels)
    return np.mean(preds == labels)


def get_softmax(preds):
    """
    compute sotfmax
    """
    _exp = np.exp(preds)
    return _exp / np.sum(_exp, axis=1, keepdims=True)


def get_sigmoid(preds):
    """
    compute sigmoid
    """
    return 1 / (1 + np.exp(-preds))


def deal_preds_of_mmdnn(conf_dict, preds):
    """
    deal preds of mmdnn
    """
    if conf_dict['task_mode'] == 'pairwise':
        return get_sigmoid(preds)
    else:
        return get_softmax(preds)


def init_checkpoint(exe, init_checkpoint_path, main_program):
    """
    init checkpoint
    """
    assert os.path.exists(
        init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path
    
    def existed_persitables(var):
        if not fluid.io.is_persistable(var):
            return False
        return os.path.exists(os.path.join(init_checkpoint_path, var.name))

    fluid.io.load_vars(
        exe,
        init_checkpoint_path,
        main_program=main_program,
        predicate=existed_persitables)
    print("Load model from {}".format(init_checkpoint_path))