infer.py 10.0 KB
Newer Older
W
wanglong03 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#!/bin/env python

#function:
#   a demo to show how to use the converted model genereated by caffe2fluid
#   
#notes:
#   only support imagenet data

import os
import sys
import inspect
import numpy as np
13 14 15 16 17


def import_fluid():
    import paddle.fluid as fluid
    return fluid
W
wanglong03 已提交
18

W
wanglong03 已提交
19

W
wanglong03 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
def load_data(imgfile, shape):
    h, w = shape[1:]
    from PIL import Image
    im = Image.open(imgfile)

    # The storage order of the loaded image is W(widht),
    # H(height), C(channel). PaddlePaddle requires
    # the CHW order, so transpose them.
    im = im.resize((w, h), Image.ANTIALIAS)
    im = np.array(im).astype(np.float32)
    im = im.transpose((2, 0, 1))  # CHW
    im = im[(2, 1, 0), :, :]  # BGR

    # The mean to be subtracted from each image.
    # By default, the per-channel ImageNet mean.
    mean = np.array([104., 117., 124.], dtype=np.float32)
    mean = mean.reshape([3, 1, 1])
    im = im - mean
    return im.reshape([1] + shape)


def build_model(net_file, net_name):
W
wanglong03 已提交
42 43
    print('build model with net_file[%s] and net_name[%s]' %
          (net_file, net_name))
W
wanglong03 已提交
44 45

    net_path = os.path.dirname(net_file)
46
    module_name = os.path.splitext(os.path.basename(net_file))[0]
W
wanglong03 已提交
47 48 49 50 51 52 53
    if net_path not in sys.path:
        sys.path.insert(0, net_path)

    try:
        m = __import__(module_name, fromlist=[net_name])
        MyNet = getattr(m, net_name)
    except Exception as e:
54
        print('failed to load module[%s.%s]' % (module_name, net_name))
W
wanglong03 已提交
55 56 57
        print(e)
        return None

58 59 60 61
    fluid = import_fluid()
    inputs_dict = MyNet.input_shapes()
    input_name = inputs_dict.keys()[0]
    input_shape = inputs_dict[input_name]
62 63
    images = fluid.layers.data(
        name=input_name, shape=input_shape, dtype='float32')
W
wanglong03 已提交
64 65 66
    #label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    net = MyNet({input_name: images})
67
    return net, inputs_dict
W
wanglong03 已提交
68 69 70 71


def dump_results(results, names, root):
    if os.path.exists(root) is False:
72
        os.mkdir(root)
W
wanglong03 已提交
73 74 75 76 77 78 79 80

    for i in range(len(names)):
        n = names[i]
        res = results[i]
        filename = os.path.join(root, n)
        np.save(filename + '.npy', res)


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def normalize_name(name_map):
    return {
        k.replace('/', '_'): v.replace('/', '_')
        for k, v in name_map.items()
    }


def rename_layer_name(names, net):
    """ because the names of output layers from caffe maybe changed for 'INPLACE' operation,
        and paddle's layers maybe fused, so we need to re-mapping their relationship for comparing
    """
    #build a mapping from paddle's name to caffe's name
    trace = getattr(net, 'name_trace', None)
    cf_trace = trace['caffe']
    real2cf = normalize_name(cf_trace['real2chg'])

    pd_trace = trace['paddle']
    pd2real = normalize_name(pd_trace['chg2real'])
    pd_deleted = normalize_name(pd_trace['deleted'])

    pd2cf_name = {}
    for pd_name, real_name in pd2real.items():
        if real_name in real2cf:
            pd2cf_name[pd_name] = '%s.%s.%s.both_changed' \
                    % (real2cf[real_name], real_name, pd_name)
        else:
            pd2cf_name[pd_name] = '%s.%s.pd_changed' % (real_name, pd_name)

    for pd_name, trace in pd_deleted.items():
        assert pd_name not in pd2cf_name, "this name[%s] has already exist" % (
            pd_name)
        pd2cf_name[pd_name] = '%s.pd_deleted' % (pd_name)

    for real_name, cf_name in real2cf.items():
        if cf_name not in pd2cf_name:
            pd2cf_name[cf_name] = '%s.cf_deleted' % (cf_name)

        if real_name not in pd2cf_name:
            pd2cf_name[real_name] = '%s.%s.cf_changed' % (cf_name, real_name)

    ret = []
    for name in names:
        new_name = pd2cf_name[name] if name in pd2cf_name else name
        print('remap paddle name[%s] to output name[%s]' % (name, new_name))
        ret.append(new_name)
    return ret


129 130
def load_model(exe, place, net_file, net_name, net_weight, debug):
    """ load model using xxxnet.py and xxxnet.npy
W
wanglong03 已提交
131
    """
132 133
    fluid = import_fluid()

W
wanglong03 已提交
134
    #1, build model
135 136 137 138
    net, input_map = build_model(net_file, net_name)
    feed_names = input_map.keys()
    feed_shapes = [v for k, v in input_map.items()]

W
wanglong03 已提交
139 140 141 142 143 144
    prediction = net.get_output()

    #2, load weights for this model
    startup_program = fluid.default_startup_program()
    exe.run(startup_program)

145 146 147
    #place = fluid.CPUPlace()
    if net_weight.find('.npy') > 0:
        net.load(data_path=net_weight, exe=exe, place=place)
W
wanglong03 已提交
148
    else:
149
        raise ValueError('not found weight file')
W
wanglong03 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162

    #3, test this model
    test_program = fluid.default_main_program().clone()

    fetch_list_var = []
    fetch_list_name = []
    if debug is False:
        fetch_list_var.append(prediction)
    else:
        for k, v in net.layers.items():
            fetch_list_var.append(v)
            fetch_list_name.append(k)

163 164 165 166 167
    return {
        'program': test_program,
        'feed_names': feed_names,
        'fetch_vars': fetch_list_var,
        'fetch_names': fetch_list_name,
168 169
        'feed_shapes': feed_shapes,
        'net': net
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    }


def get_shape(fluid, program, name):
    for var in program.list_vars():
        if var.name == 'data':
            return list(var.shape[1:])

    raise ValueError('not found shape for input layer[%s], '
                     'you can specify by yourself' % (name))


def load_inference_model(dirname, exe):
    """ load fluid's inference model
    """
    fluid = import_fluid()
    model_fn = 'model'
    params_fn = 'params'
    if os.path.exists(os.path.join(dirname, model_fn)) \
            and os.path.exists(os.path.join(dirname, params_fn)):
        program, feed_names, fetch_targets = fluid.io.load_inference_model(\
                dirname, exe, model_fn, params_fn)
    else:
        raise ValueError('not found model files in direcotry[%s]' % (dirname))

    #print fluid.global_scope().find_var(feed_names[0])
    input_shape = get_shape(fluid, program, feed_names[0])
    feed_shapes = [input_shape]

    return program, feed_names, fetch_targets, feed_shapes


def infer(model_path, imgfile, net_file=None, net_name=None, debug=True):
    """ do inference using a model which consist 'xxx.py' and 'xxx.npy'
    """
    fluid = import_fluid()

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    try:
        ret = load_inference_model(model_path, exe)
        program, feed_names, fetch_targets, feed_shapes = ret
        debug = False
        print('found a inference model for fluid')
    except ValueError as e:
        print('try to load model using net file and weight file')
        net_weight = model_path
        ret = load_model(exe, place, net_file, net_name, net_weight, debug)
        program = ret['program']
        feed_names = ret['feed_names']
        fetch_targets = ret['fetch_vars']
        fetch_list_name = ret['fetch_names']
        feed_shapes = ret['feed_shapes']
223
        net = ret['net']
224 225 226 227

    input_name = feed_names[0]
    input_shape = feed_shapes[0]

W
wanglong03 已提交
228
    np_images = load_data(imgfile, input_shape)
229 230 231
    results = exe.run(program=program,
                      feed={input_name: np_images},
                      fetch_list=fetch_targets)
W
wanglong03 已提交
232 233

    if debug is True:
234
        dump_path = 'results.paddle'
235 236
        dump_names = rename_layer_name(fetch_list_name, net)
        dump_results(results, dump_names, dump_path)
237
        print('all result of layers dumped to [%s]' % (dump_path))
W
wanglong03 已提交
238 239
    else:
        result = results[0]
240
        print('succeed infer with results[class:%d]' % (np.argmax(result)))
W
wanglong03 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    return 0


def caffe_infer(prototxt, caffemodel, datafile):
    """ do inference using pycaffe for debug,
        all intermediate results will be dumpped to 'results.caffe'
    """
    import caffe

    net = caffe.Net(prototxt, caffemodel, caffe.TEST)
    input_layer = net.blobs.keys()[0]
    print('got name of input layer is:%s' % (input_layer))
    input_shape = list(net.blobs[input_layer].data.shape[1:])

    if '.npy' in datafile:
        np_images = np.load(datafile)
    else:
        np_images = load_data(datafile, input_shape)

    inputs = {input_layer: np_images}
    net.forward_all(**inputs)

    results = []
    names = []
    for k, v in net.blobs.items():
        k = k.replace('/', '_')
        names.append(k)
        results.append(v.data.copy())

    dump_path = 'results.caffe'
    dump_results(results, names, dump_path)
    print('all result of layers dumped to [%s]' % (dump_path))
    return 0

W
wanglong03 已提交
276 277 278 279 280 281

if __name__ == "__main__":
    """ maybe more convenient to use 'run.sh' to call this tool
    """
    net_file = 'models/resnet50/resnet50.py'
    weight_file = 'models/resnet50/resnet50.npy'
282
    datafile = 'data/65.jpeg'
W
wanglong03 已提交
283
    net_name = 'ResNet50'
284
    model_file = 'models/resnet50/fluid'
W
wanglong03 已提交
285

286 287 288 289
    ret = None
    if len(sys.argv) <= 2:
        pass
    elif sys.argv[1] == 'caffe':
290 291 292 293 294 295 296 297
        if len(sys.argv) != 5:
            print('usage:')
            print('\tpython %s caffe [prototxt] [caffemodel] [datafile]' %
                  (sys.argv[0]))
            sys.exit(1)
        prototxt = sys.argv[2]
        caffemodel = sys.argv[3]
        datafile = sys.argv[4]
298 299 300 301 302 303 304
        ret = caffe_infer(prototxt, caffemodel, datafile)
    elif sys.argv[1] == 'infer':
        if len(sys.argv) != 4:
            print('usage:')
            print('\tpython %s infer [fluid_model] [datafile]' % (sys.argv[0]))
            sys.exit(1)
        model_path = sys.argv[2]
305
        datafile = sys.argv[3]
306 307 308 309 310 311
        ret = infer(model_path, datafile)
    elif sys.argv[1] == 'dump':
        if len(sys.argv) != 6:
            print('usage:')
            print('\tpython %s dump [net_file] [weight_file] [datafile] [net_name]' \
                    % (sys.argv[0]))
312
            print('\teg:python %s dump %s %s %s %s' % (sys.argv[0],\
313 314 315 316 317 318 319 320 321 322
                net_file, weight_file, datafile, net_name))
            sys.exit(1)

        net_file = sys.argv[2]
        weight_file = sys.argv[3]
        datafile = sys.argv[4]
        net_name = sys.argv[5]
        ret = infer(weight_file, datafile, net_file, net_name)

    if ret is None:
W
wanglong03 已提交
323
        print('usage:')
324 325
        print(' python %s [infer] [fluid_model] [imgfile]' % (sys.argv[0]))
        print(' eg:python %s infer %s %s' % (sys.argv[0], model_file, datafile))
W
wanglong03 已提交
326 327
        sys.exit(1)

328
    sys.exit(ret)