data_reader.py 14.4 KB
Newer Older
1
"""This module contains data processing related logic.
Z
zhxfl 已提交
2
"""
3 4 5 6
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
zhxfl 已提交
7 8
import random
import struct
Y
yangyaming 已提交
9 10 11 12 13
import Queue
import time
import numpy as np
from threading import Thread
from multiprocessing import Manager, Process
14 15
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
16 17 18 19 20 21 22 23 24 25 26 27 28 29


class SampleInfo(object):
    """SampleInfo holds the necessary information to load an example from disk.

    Args:
        feature_bin_path (str): File containing the feature data.
        feature_start (int): Start position of the sample's feature data.
        feature_size (int): Byte count of the sample's feature data.
        feature_frame_num (int): Time length of the sample.
        feature_dim (int): Feature dimension of one frame.
        label_bin_path (str): File containing the label data.
        label_size (int): Byte count of the sample's label data. 
        label_frame_num (int): Label number of the sample.
Z
zhxfl 已提交
30 31
    """

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    def __init__(self, feature_bin_path, feature_start, feature_size,
                 feature_frame_num, feature_dim, label_bin_path, label_start,
                 label_size, label_frame_num):
        self.feature_bin_path = feature_bin_path
        self.feature_start = feature_start
        self.feature_size = feature_size
        self.feature_frame_num = feature_frame_num
        self.feature_dim = feature_dim

        self.label_bin_path = label_bin_path
        self.label_start = label_start
        self.label_size = label_size
        self.label_frame_num = label_frame_num


class SampleInfoBucket(object):
    """SampleInfoBucket contains paths of several description files. Feature
    description file contains necessary information to access samples' feature 
    data and label description file contains necessary information to
    access samples' label data. SampleInfoBucket is the minimum unit to do 
    shuffle.

    Args:
        feature_bin_paths (list|tuple): Files containing the binary feature 
                                        data.
        feature_desc_paths (list|tuple): Files containing the description of 
                                         samples' feature data. 
        label_bin_paths (list|tuple): Files containing the binary label data.
        label_desc_paths (list|tuple): Files containing the description of
                                       samples' label data.
Z
zhxfl 已提交
62
    """
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    def __init__(self, feature_bin_paths, feature_desc_paths, label_bin_paths,
                 label_desc_paths):
        block_num = len(label_bin_paths)
        assert len(label_desc_paths) == block_num
        assert len(feature_bin_paths) == block_num
        assert len(feature_desc_paths) == block_num
        self._block_num = block_num

        self._feature_bin_paths = feature_bin_paths
        self._feature_desc_paths = feature_desc_paths
        self._label_bin_paths = label_bin_paths
        self._label_desc_paths = label_desc_paths

    def generate_sample_info_list(self):
        sample_info_list = []
        for block_idx in xrange(self._block_num):
            label_bin_path = self._label_bin_paths[block_idx]
            label_desc_path = self._label_desc_paths[block_idx]
            feature_bin_path = self._feature_bin_paths[block_idx]
            feature_desc_path = self._feature_desc_paths[block_idx]

            label_desc_lines = open(label_desc_path).readlines()
            feature_desc_lines = open(feature_desc_path).readlines()

            sample_num = int(label_desc_lines[0].split()[1])
            assert sample_num == int(feature_desc_lines[0].split()[1])

            for i in xrange(sample_num):
                feature_desc_split = feature_desc_lines[i + 1].split()
                feature_start = int(feature_desc_split[2])
                feature_size = int(feature_desc_split[3])
                feature_frame_num = int(feature_desc_split[4])
                feature_dim = int(feature_desc_split[5])

                label_desc_split = label_desc_lines[i + 1].split()
                label_start = int(label_desc_split[2])
                label_size = int(label_desc_split[3])
                label_frame_num = int(label_desc_split[4])

                sample_info_list.append(
                    SampleInfo(feature_bin_path, feature_start, feature_size,
                               feature_frame_num, feature_dim, label_bin_path,
                               label_start, label_size, label_frame_num))

        return sample_info_list


class EpochEndSignal():
    pass


class DataReader(object):
    """DataReader provides basic audio sample preprocessing pipeline including
    I/O and augmentation transformation.

    Args:
        feature_file_list (str): File containing feature data related files.
        label_file_list (str): File containing label data related files.
        frame_dim (int): The final feature dimension of one frame after all 
                         augmentation applied.
        drop_sentence_len (int): Lower threshold bound to filter samples having 
                                 long sentence.
        process_num (int): Number of processes for processing data.
        sample_buffer_size (int): Buffer size to indicate the maximum samples 
                                  cached.
        sample_info_buffer_size (int): Buffer size to indicate the maximum 
                                       sample information cached.
Y
yangyaming 已提交
131 132
        batch_buffer_size (int): Buffer size to indicate the maximum batch 
                                 cached.
133 134 135
        shuffle_block_num (int): Block number indicating the minimum unit to do 
                                 shuffle.
        random_seed (int): Random seed.
Z
zhxfl 已提交
136 137
    """

138 139 140 141 142 143 144 145 146
    def __init__(
            self,
            feature_file_list,
            label_file_list,
            frame_dim=120 * 11,  # @TODO augmentor is responsible for the value
            drop_sentence_len=512,
            drop_frame_len=256,
            process_num=10,
            sample_buffer_size=1024,
Y
yangyaming 已提交
147 148
            sample_info_buffer_size=1024,
            batch_buffer_size=1024,
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            shuffle_block_num=1,
            random_seed=0):
        self._feature_file_list = feature_file_list
        self._label_file_list = label_file_list
        self._drop_sentence_len = drop_sentence_len
        self._frame_dim = frame_dim
        self._drop_frame_len = drop_frame_len
        self._shuffle_block_num = shuffle_block_num
        self._block_info_list = None
        self._rng = random.Random(random_seed)
        self._bucket_list = None
        self.generate_bucket_list(True)
        self._order_id = 0
        self._manager = Manager()
        self._sample_buffer_size = sample_buffer_size
        self._sample_info_buffer_size = sample_info_buffer_size
Y
yangyaming 已提交
165
        self._batch_buffer_size = batch_buffer_size
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        self._process_num = process_num

    def generate_bucket_list(self, is_shuffle):
        if self._block_info_list is None:
            block_feature_info_lines = open(self._feature_file_list).readlines()
            block_label_info_lines = open(self._label_file_list).readlines()
            assert len(block_feature_info_lines) == len(block_label_info_lines)
            self._block_info_list = []
            for i in xrange(0, len(block_feature_info_lines), 2):
                block_info = (block_feature_info_lines[i],
                              block_feature_info_lines[i + 1],
                              block_label_info_lines[i],
                              block_label_info_lines[i + 1])
                self._block_info_list.append(
                    map(lambda line: line.strip(), block_info))

        if is_shuffle:
            self._rng.shuffle(self._block_info_list)

        self._bucket_list = []
        for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
            bucket_block_info = self._block_info_list[i:i +
                                                      self._shuffle_block_num]
            self._bucket_list.append(
                SampleInfoBucket(
                    map(lambda info: info[0], bucket_block_info),
                    map(lambda info: info[1], bucket_block_info),
                    map(lambda info: info[2], bucket_block_info),
                    map(lambda info: info[3], bucket_block_info)))

    # @TODO make this configurable
    def set_transformers(self, transformers):
        self._transformers = transformers

    def _sample_generator(self):
        sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
        sample_queue = self._manager.Queue(self._sample_buffer_size)
        self._order_id = 0

Y
yangyaming 已提交
205
        def ordered_feeding_task(sample_info_queue):
206 207 208 209 210 211 212 213 214 215 216 217
            for sample_info_bucket in self._bucket_list:
                sample_info_list = sample_info_bucket.generate_sample_info_list(
                )
                self._rng.shuffle(sample_info_list)  # do shuffle here
                for sample_info in sample_info_list:
                    sample_info_queue.put((sample_info, self._order_id))
                    self._order_id += 1

            for i in xrange(self._process_num):
                sample_info_queue.put(EpochEndSignal())

        feeding_thread = Thread(
Y
yangyaming 已提交
218
            target=ordered_feeding_task, args=(sample_info_queue, ))
219 220 221
        feeding_thread.daemon = True
        feeding_thread.start()

Y
yangyaming 已提交
222
        def ordered_processing_task(sample_info_queue, sample_queue, out_order):
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            def read_bytes(fpath, start, size):
                f = open(fpath, 'r')
                f.seek(start, 0)
                binary_bytes = f.read(size)
                f.close()
                return binary_bytes

            ins = sample_info_queue.get()

            while not isinstance(ins, EpochEndSignal):
                sample_info, order_id = ins

                feature_bytes = read_bytes(sample_info.feature_bin_path,
                                           sample_info.feature_start,
                                           sample_info.feature_size)

                label_bytes = read_bytes(sample_info.label_bin_path,
                                         sample_info.label_start,
                                         sample_info.label_size)

                assert sample_info.label_frame_num * 4 == len(label_bytes)
                label_array = struct.unpack('I' * sample_info.label_frame_num,
                                            label_bytes)
                label_data = np.array(
                    label_array, dtype='int64').reshape(
                        (sample_info.label_frame_num, 1))

                feature_frame_num = sample_info.feature_frame_num
                feature_dim = sample_info.feature_dim
                assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
                feature_array = struct.unpack('f' * feature_frame_num *
                                              feature_dim, feature_bytes)
                feature_data = np.array(
                    feature_array, dtype='float32').reshape((
                        sample_info.feature_frame_num, sample_info.feature_dim))

                sample_data = (feature_data, label_data)
                for transformer in self._transformers:
                    # @TODO(pkuyym) to make transfomer only accept feature_data
                    sample_data = transformer.perform_trans(sample_data)

                while order_id != out_order[0]:
                    time.sleep(0.001)

                # drop long sentence
                if self._drop_sentence_len >= sample_data[0].shape[0]:
                    sample_queue.put(sample_data)

                out_order[0] += 1
                ins = sample_info_queue.get()

            sample_queue.put(EpochEndSignal())

        out_order = self._manager.list([0])
        args = (sample_info_queue, sample_queue, out_order)
        workers = [
            Process(
Y
yangyaming 已提交
280
                target=ordered_processing_task, args=args)
281 282 283 284 285 286 287 288 289 290 291 292 293
            for _ in xrange(self._process_num)
        ]

        for w in workers:
            w.daemon = True
            w.start()

        finished_process_num = 0

        while finished_process_num < self._process_num:
            sample = sample_queue.get()
            if isinstance(sample, EpochEndSignal):
                finished_process_num += 1
Z
zhxfl 已提交
294
                continue
295 296 297 298 299 300 301
            yield sample

        feeding_thread.join()
        for w in workers:
            w.join()

    def batch_iterator(self, batch_size, minimum_batch_size):
Y
yangyaming 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        def batch_assembling_task(sample_generator, batch_queue):
            batch_samples = []
            lod = [0]
            for sample in sample_generator():
                batch_samples.append(sample)
                lod.append(lod[-1] + sample[0].shape[0])
                if len(batch_samples) == batch_size:
                    batch_feature = np.zeros(
                        (lod[-1], self._frame_dim), dtype="float32")
                    batch_label = np.zeros((lod[-1], 1), dtype="int64")
                    start = 0
                    for sample in batch_samples:
                        frame_num = sample[0].shape[0]
                        batch_feature[start:start + frame_num, :] = sample[0]
                        batch_label[start:start + frame_num, :] = sample[1]
                        start += frame_num
                    batch_queue.put((batch_feature, batch_label, lod))
                    batch_samples = []
                    lod = [0]

            if len(batch_samples) >= minimum_batch_size:
323 324 325 326 327 328 329 330 331
                batch_feature = np.zeros(
                    (lod[-1], self._frame_dim), dtype="float32")
                batch_label = np.zeros((lod[-1], 1), dtype="int64")
                start = 0
                for sample in batch_samples:
                    frame_num = sample[0].shape[0]
                    batch_feature[start:start + frame_num, :] = sample[0]
                    batch_label[start:start + frame_num, :] = sample[1]
                    start += frame_num
Y
yangyaming 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                batch_queue.put((batch_feature, batch_label, lod))

            batch_queue.put(EpochEndSignal())

        batch_queue = Queue.Queue(self._batch_buffer_size)

        assembling_thread = Thread(
            target=batch_assembling_task,
            args=(self._sample_generator, batch_queue))
        assembling_thread.daemon = True
        assembling_thread.start()

        batch_data = batch_queue.get()
        while not isinstance(batch_data, EpochEndSignal):
            yield batch_data
            batch_data = batch_queue.get()

        assembling_thread.join()