Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
09fca5a6
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
09fca5a6
编写于
2月 02, 2018
作者:
Z
zhxfl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revise by review
上级
52cda823
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
321 addition
and
247 deletion
+321
-247
fluid/DeepASR/data_utils/data_read.py
fluid/DeepASR/data_utils/data_read.py
+253
-0
fluid/DeepASR/data_utils/load_data.py
fluid/DeepASR/data_utils/load_data.py
+0
-195
fluid/DeepASR/data_utils/trans_add_delta.py
fluid/DeepASR/data_utils/trans_add_delta.py
+17
-8
fluid/DeepASR/data_utils/trans_mean_variance_norm.py
fluid/DeepASR/data_utils/trans_mean_variance_norm.py
+16
-5
fluid/DeepASR/data_utils/trans_slit.py
fluid/DeepASR/data_utils/trans_slit.py
+0
-14
fluid/DeepASR/data_utils/trans_splice.py
fluid/DeepASR/data_utils/trans_splice.py
+19
-9
fluid/DeepASR/data_utils/util.py
fluid/DeepASR/data_utils/util.py
+0
-1
fluid/DeepASR/stacked_dynamic_lstm.py
fluid/DeepASR/stacked_dynamic_lstm.py
+10
-7
fluid/DeepASR/test/test_data_trans.py
fluid/DeepASR/test/test_data_trans.py
+6
-8
未找到文件。
fluid/DeepASR/data_utils/data_read.py
0 → 100644
浏览文件 @
09fca5a6
"""This model read the sample from disk.
use multiprocessing to reading samples
push samples from one block to multiprocessing queue
Todos:
1. multiprocess read block from disk
"""
import
random
import
Queue
import
numpy
as
np
import
struct
import
data_utils.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.trans_add_delta
as
trans_add_delta
class
OneBlock
(
object
):
""" struct for one block :
contain label, label desc, feature, feature_desc
Attributes:
label(str) : label path of one block
label_desc(str) : label description path of one block
feature(str) : feature path of on block
feature_desc(str) : feature description path of on block
"""
def
__init__
(
self
):
"""the constructor."""
self
.
label
=
"label"
self
.
label_desc
=
"label_desc"
self
.
feature
=
"feature"
self
.
feature_desc
=
"feature_desc"
class
DataRead
(
object
):
"""
Attributes:
_lblock(obj:`OneBlock`) : the list of OneBlock
_ndrop_sentence_len(int): dropout the sentence which's frame_num large than _ndrop_sentence_len
_que_sample(obj:`Queue`): sample buffer
_nframe_dim(int): the batch sample frame_dim(todo remove)
_nstart_block_idx(int): the start block id
_nload_block_num(int): the block num
"""
def
__init__
(
self
,
sfeature_lst
,
slabel_lst
,
ndrop_sentence_len
=
512
):
"""
Args:
sfeature_lst(str):feature lst path
slabel_lst(str):label lst path
Returns:
None
"""
self
.
_lblock
=
[]
self
.
_ndrop_sentence_len
=
ndrop_sentence_len
self
.
_que_sample
=
Queue
.
Queue
()
self
.
_nframe_dim
=
120
*
11
self
.
_nstart_block_idx
=
0
self
.
_nload_block_num
=
1
self
.
_ndrop_frame_len
=
256
self
.
_load_list
(
sfeature_lst
,
slabel_lst
)
def
_load_list
(
self
,
sfeature_lst
,
slabel_lst
):
""" load list and shuffle
Args:
sfeature_lst(str):feature lst path
slabel_lst(str):label lst path
Returns:
None
"""
lfeature
=
open
(
sfeature_lst
).
readlines
()
llabel
=
open
(
slabel_lst
).
readlines
()
assert
len
(
llabel
)
==
len
(
lfeature
)
for
i
in
range
(
0
,
len
(
lfeature
),
2
):
one_block
=
OneBlock
()
one_block
.
label
=
llabel
[
i
]
one_block
.
label_desc
=
llabel
[
i
+
1
]
one_block
.
feature
=
lfeature
[
i
]
one_block
.
feature_desc
=
lfeature
[
i
+
1
]
self
.
_lblock
.
append
(
one_block
)
random
.
shuffle
(
self
.
_lblock
)
def
_load_one_block
(
self
,
lsample
,
id
):
"""read one block by id and push load sample in list lsample
Args:
lsample(list): return sample list
id(int): block id
Returns:
None
"""
if
id
>=
len
(
self
.
_lblock
):
return
slabel_path
=
self
.
_lblock
[
id
].
label
.
strip
()
slabel_desc_path
=
self
.
_lblock
[
id
].
label_desc
.
strip
()
sfeature_path
=
self
.
_lblock
[
id
].
feature
.
strip
()
sfeature_desc_path
=
self
.
_lblock
[
id
].
feature_desc
.
strip
()
llabel_line
=
open
(
slabel_desc_path
).
readlines
()
lfeature_line
=
open
(
sfeature_desc_path
).
readlines
()
file_lable_bin
=
open
(
slabel_path
,
"r"
)
file_feature_bin
=
open
(
sfeature_path
,
"r"
)
sample_num
=
int
(
llabel_line
[
0
].
split
()[
1
])
assert
sample_num
==
int
(
lfeature_line
[
0
].
split
()[
1
])
llabel_line
=
llabel_line
[
1
:]
lfeature_line
=
lfeature_line
[
1
:]
for
i
in
range
(
sample_num
):
# read label
llabel_split
=
llabel_line
[
i
].
split
()
nlabel_start
=
int
(
llabel_split
[
2
])
nlabel_size
=
int
(
llabel_split
[
3
])
nlabel_frame_num
=
int
(
llabel_split
[
4
])
file_lable_bin
.
seek
(
nlabel_start
,
0
)
label_bytes
=
file_lable_bin
.
read
(
nlabel_size
)
assert
nlabel_frame_num
*
4
==
len
(
label_bytes
)
label_array
=
struct
.
unpack
(
'I'
*
nlabel_frame_num
,
label_bytes
)
label_data
=
np
.
array
(
label_array
,
dtype
=
"int64"
)
label_data
=
label_data
.
reshape
((
nlabel_frame_num
,
1
))
# read feature
lfeature_split
=
lfeature_line
[
i
].
split
()
nfeature_start
=
int
(
lfeature_split
[
2
])
nfeature_size
=
int
(
lfeature_split
[
3
])
nfeature_frame_num
=
int
(
lfeature_split
[
4
])
nfeature_frame_dim
=
int
(
lfeature_split
[
5
])
file_feature_bin
.
seek
(
nfeature_start
,
0
)
feature_bytes
=
file_feature_bin
.
read
(
nfeature_size
)
assert
nfeature_frame_num
*
nfeature_frame_dim
*
4
==
len
(
feature_bytes
)
feature_array
=
struct
.
unpack
(
'f'
*
nfeature_frame_num
*
nfeature_frame_dim
,
feature_bytes
)
feature_data
=
np
.
array
(
feature_array
,
dtype
=
"float32"
)
feature_data
=
feature_data
.
reshape
(
(
nfeature_frame_num
,
nfeature_frame_dim
))
#drop long sentence
if
self
.
_ndrop_frame_len
<
feature_data
.
shape
[
0
]:
continue
lsample
.
append
((
feature_data
,
label_data
))
def
get_one_batch
(
self
,
nbatch_size
):
"""construct one batch(feature, label), batch size is nbatch_size
Args:
nbatch_size(int): batch size
Returns:
None
"""
if
self
.
_que_sample
.
empty
():
lsample
=
self
.
_load_block
(
range
(
self
.
_nstart_block_idx
,
self
.
_nstart_block_idx
+
self
.
_nload_block_num
,
1
))
self
.
_move_sample
(
lsample
)
self
.
_nstart_block_idx
+=
self
.
_nload_block_num
if
self
.
_que_sample
.
empty
():
self
.
_nstart_block_idx
=
0
return
None
#cal all frame num
ncur_len
=
0
lod
=
[
0
]
samples
=
[]
bat_feature
=
np
.
zeros
((
nbatch_size
,
self
.
_nframe_dim
))
for
i
in
range
(
nbatch_size
):
# empty clear zero
if
self
.
_que_sample
.
empty
():
self
.
_nstart_block_idx
=
0
# copy
else
:
(
one_feature
,
one_label
)
=
self
.
_que_sample
.
get
()
samples
.
append
((
one_feature
,
one_label
))
ncur_len
+=
one_feature
.
shape
[
0
]
lod
.
append
(
ncur_len
)
bat_feature
=
np
.
zeros
((
ncur_len
,
self
.
_nframe_dim
),
dtype
=
"float32"
)
bat_label
=
np
.
zeros
((
ncur_len
,
1
),
dtype
=
"int64"
)
ncur_len
=
0
for
sample
in
samples
:
one_feature
=
sample
[
0
]
one_label
=
sample
[
1
]
nframe_num
=
one_feature
.
shape
[
0
]
nstart
=
ncur_len
nend
=
ncur_len
+
nframe_num
bat_feature
[
nstart
:
nend
,
:]
=
one_feature
bat_label
[
nstart
:
nend
,
:]
=
one_label
ncur_len
+=
nframe_num
return
(
bat_feature
,
bat_label
,
lod
)
def
set_trans
(
self
,
ltrans
):
""" set transform list
Args:
ltrans(list): data tranform list
Returns:
None
"""
self
.
_ltrans
=
ltrans
def
_load_block
(
self
,
lblock_id
):
"""read blocks
"""
lsample
=
[]
for
id
in
lblock_id
:
self
.
_load_one_block
(
lsample
,
id
)
# transform sample
for
(
nidx
,
sample
)
in
enumerate
(
lsample
):
for
trans
in
self
.
_ltrans
:
sample
=
trans
.
perform_trans
(
sample
)
#print nidx
lsample
[
nidx
]
=
sample
return
lsample
def
load_block
(
self
,
lblock_id
):
"""read blocks
Args:
lblock_id(list):the block list id
Returns:
None
"""
lsample
=
[]
for
id
in
lblock_id
:
self
.
_load_one_block
(
lsample
,
id
)
# transform sample
for
(
nidx
,
sample
)
in
enumerate
(
lsample
):
for
trans
in
self
.
_ltrans
:
sample
=
trans
.
perform_trans
(
sample
)
#print nidx
lsample
[
nidx
]
=
sample
return
lsample
def
_move_sample
(
self
,
lsample
):
"""move sample to queue
Args:
lsample(list): one block of samples read from disk
Returns:
None
"""
# random
random
.
shuffle
(
lsample
)
for
sample
in
lsample
:
self
.
_que_sample
.
put
(
sample
)
fluid/DeepASR/data_utils/load_data.py
已删除
100644 → 0
浏览文件 @
52cda823
#by zhxfl 2018.01.24
""" @package docstring
load speech data from disk
"""
import
random
import
Queue
import
numpy
import
struct
import
data_utils.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.trans_add_delta
as
trans_add_delta
g_lblock
=
[]
g_que_sample
=
Queue
.
Queue
()
g_nframe_dim
=
120
*
11
g_nstart_block_idx
=
0
g_nload_block_num
=
1
g_ndrop_frame_len
=
256
class
OneBlock
(
object
):
""" Documentation for a class.
struct for one block :
contain label, label desc, feature, feature_desc
"""
def
__init__
(
self
):
"""The constructor."""
self
.
label
=
""
self
.
label_desc
=
""
self
.
feature
=
""
self
.
feature_desc
=
""
def
set_trans
(
ltrans
):
global
g_ltrans
g_ltrans
=
ltrans
def
load_list
(
sfeature_lst
,
slabel_lst
):
""" load list """
global
g_lblock
lFeature
=
open
(
sfeature_lst
).
readlines
()
lLabel
=
open
(
slabel_lst
).
readlines
()
assert
len
(
lLabel
)
==
len
(
lFeature
)
for
i
in
range
(
0
,
len
(
lFeature
),
2
):
one_block
=
OneBlock
()
one_block
.
label
=
lLabel
[
i
]
one_block
.
label_desc
=
lLabel
[
i
+
1
]
one_block
.
feature
=
lFeature
[
i
]
one_block
.
feature_desc
=
lFeature
[
i
+
1
]
g_lblock
.
append
(
one_block
)
random
.
shuffle
(
g_lblock
)
def
load_one_block
(
lsample
,
id
):
"""read one block"""
global
g_lblock
if
id
>=
len
(
g_lblock
):
return
slabel_path
=
g_lblock
[
id
].
label
.
replace
(
"
\n
"
,
""
)
slabel_desc_path
=
g_lblock
[
id
].
label_desc
.
replace
(
"
\n
"
,
""
)
sfeature_path
=
g_lblock
[
id
].
feature
.
replace
(
"
\n
"
,
""
)
sfeature_desc_path
=
g_lblock
[
id
].
feature_desc
.
replace
(
"
\n
"
,
""
)
llabel_line
=
open
(
slabel_desc_path
).
readlines
()
lfeature_line
=
open
(
sfeature_desc_path
).
readlines
()
file_lable_bin
=
open
(
slabel_path
,
"r"
)
file_feature_bin
=
open
(
sfeature_path
,
"r"
)
sample_num
=
int
(
llabel_line
[
0
].
split
()[
1
])
assert
sample_num
==
int
(
lfeature_line
[
0
].
split
()[
1
])
llabel_line
=
llabel_line
[
1
:]
lfeature_line
=
lfeature_line
[
1
:]
for
i
in
range
(
sample_num
):
# read label
llabel_split
=
llabel_line
[
i
].
split
()
nlabel_start
=
int
(
llabel_split
[
2
])
nlabel_size
=
int
(
llabel_split
[
3
])
nlabel_frame_num
=
int
(
llabel_split
[
4
])
file_lable_bin
.
seek
(
nlabel_start
,
0
)
label_bytes
=
file_lable_bin
.
read
(
nlabel_size
)
assert
nlabel_frame_num
*
4
==
len
(
label_bytes
)
label_array
=
struct
.
unpack
(
'I'
*
nlabel_frame_num
,
label_bytes
)
label_data
=
numpy
.
array
(
label_array
,
dtype
=
int
)
label_data
=
label_data
.
reshape
((
nlabel_frame_num
,
1
))
# read feature
lfeature_split
=
lfeature_line
[
i
].
split
()
nfeature_start
=
int
(
lfeature_split
[
2
])
nfeature_size
=
int
(
lfeature_split
[
3
])
nfeature_frame_num
=
int
(
lfeature_split
[
4
])
nfeature_frame_dim
=
int
(
lfeature_split
[
5
])
file_feature_bin
.
seek
(
nfeature_start
,
0
)
feature_bytes
=
file_feature_bin
.
read
(
nfeature_size
)
assert
nfeature_frame_num
*
nfeature_frame_dim
*
4
==
len
(
feature_bytes
)
feature_array
=
struct
.
unpack
(
'f'
*
nfeature_frame_num
*
nfeature_frame_dim
,
feature_bytes
)
feature_data
=
numpy
.
array
(
feature_array
,
dtype
=
float
)
feature_data
=
feature_data
.
reshape
(
(
nfeature_frame_num
,
nfeature_frame_dim
))
global
g_ndrop_frame_len
#drop long sentence
if
g_ndrop_frame_len
<
feature_data
.
shape
[
0
]:
continue
lsample
.
append
((
feature_data
,
label_data
))
def
load_block
(
lblock_id
):
"""
read blocks
"""
global
g_ltrans
lsample
=
[]
for
id
in
lblock_id
:
load_one_block
(
lsample
,
id
)
# transform sample
for
(
nidx
,
sample
)
in
enumerate
(
lsample
):
for
trans
in
g_ltrans
:
sample
=
trans
.
perform_trans
(
sample
)
print
nidx
lsample
[
nidx
]
=
sample
return
lsample
def
move_sample
(
lsample
):
"""
move sample to queue
"""
# random
random
.
shuffle
(
lsample
)
global
g_que_sample
for
sample
in
lsample
:
g_que_sample
.
put
(
sample
)
def
get_one_batch
(
nbatch_size
):
"""
construct one batch
"""
global
g_que_sample
global
g_nstart_block_idx
global
g_nframe_dim
global
g_nload_block_num
if
g_que_sample
.
empty
():
lsample
=
load_block
(
range
(
g_nstart_block_idx
,
g_nstart_block_idx
+
g_nload_block_num
,
1
))
move_sample
(
lsample
)
g_nstart_block_idx
+=
g_nload_block_num
if
g_que_sample
.
empty
():
g_nstart_block_idx
=
0
return
None
#cal all frame num
ncur_len
=
0
lod
=
[
0
]
samples
=
[]
bat_feature
=
numpy
.
zeros
((
nbatch_size
,
g_nframe_dim
))
for
i
in
range
(
nbatch_size
):
# empty clear zero
if
g_que_sample
.
empty
():
g_nstart_block_idx
=
0
# copy
else
:
(
one_feature
,
one_label
)
=
g_que_sample
.
get
()
samples
.
append
((
one_feature
,
one_label
))
ncur_len
+=
one_feature
.
shape
[
0
]
lod
.
append
(
ncur_len
)
bat_feature
=
numpy
.
zeros
((
ncur_len
,
g_nframe_dim
),
dtype
=
"float32"
)
bat_label
=
numpy
.
zeros
((
ncur_len
,
1
),
dtype
=
"int64"
)
ncur_len
=
0
for
sample
in
samples
:
one_feature
=
sample
[
0
]
one_label
=
sample
[
1
]
nframe_num
=
one_feature
.
shape
[
0
]
nstart
=
ncur_len
nend
=
ncur_len
+
nframe_num
bat_feature
[
nstart
:
nend
,
:]
=
one_feature
bat_label
[
nstart
:
nend
,
:]
=
one_label
ncur_len
+=
nframe_num
return
(
bat_feature
,
bat_label
,
lod
)
fluid/DeepASR/data_utils/trans_add_delta.py
浏览文件 @
09fca5a6
#by zhxfl 2018.01.29
import
numpy
import
numpy
as
np
import
math
import
copy
...
...
@@ -7,6 +6,10 @@ import copy
class
TransAddDelta
(
object
):
""" add delta of feature data
trans feature for shape(a, b) to shape(a, b * 3)
Attributes:
_norder(int):
_window(int):
"""
def
__init__
(
self
,
norder
=
2
,
nwindow
=
2
):
...
...
@@ -21,26 +24,30 @@ class TransAddDelta(object):
def
perform_trans
(
self
,
sample
):
""" add delta for feature
trans feature shape from (a,b) to (a, b * 3)
Args:
sample(object,tuple): contain feature numpy and label numpy
Returns:
(feature, label)
"""
(
feature
,
label
)
=
sample
frame_dim
=
feature
.
shape
[
1
]
d_frame_dim
=
frame_dim
*
3
head_filled
=
5
tail_filled
=
5
mat
=
n
umpy
.
zeros
(
mat
=
n
p
.
zeros
(
(
feature
.
shape
[
0
]
+
head_filled
+
tail_filled
,
d_frame_dim
),
dtype
=
"float32"
)
#copy first frame
for
i
in
xrange
(
head_filled
):
n
umpy
.
copyto
(
mat
[
i
,
0
:
frame_dim
],
feature
[
0
,
:])
n
p
.
copyto
(
mat
[
i
,
0
:
frame_dim
],
feature
[
0
,
:])
numpy
.
copyto
(
mat
[
head_filled
:
head_filled
+
feature
.
shape
[
0
],
0
:
frame_dim
],
feature
[:,
:])
np
.
copyto
(
mat
[
head_filled
:
head_filled
+
feature
.
shape
[
0
],
0
:
frame_dim
],
feature
[:,
:])
# copy last frame
for
i
in
xrange
(
head_filled
+
feature
.
shape
[
0
],
mat
.
shape
[
0
],
1
):
n
umpy
.
copyto
(
mat
[
i
,
0
:
frame_dim
],
feature
[
feature
.
shape
[
0
]
-
1
,
:])
n
p
.
copyto
(
mat
[
i
,
0
:
frame_dim
],
feature
[
feature
.
shape
[
0
]
-
1
,
:])
nframe
=
feature
.
shape
[
0
]
start
=
head_filled
...
...
@@ -65,6 +72,8 @@ class TransAddDelta(object):
size: frame dimentional
n: frame num
step: 3 * (frame num)
Returns:
None
"""
sigma_t2
=
0.0
delta_window
=
self
.
_nwindow
...
...
fluid/DeepASR/data_utils/trans_mean_variance_norm.py
浏览文件 @
09fca5a6
#by zhxfl 2018.01.29
import
numpy
import
numpy
as
np
import
math
class
TransMeanVarianceNorm
(
object
):
""" normalization of mean variance for feature data
Attributes:
_mean(numpy.array): the feature mean vector
_var(numpy.array): the feature variance
"""
def
__init__
(
self
,
snorm_path
):
...
...
@@ -17,12 +19,14 @@ class TransMeanVarianceNorm(object):
self
.
_load_norm
(
snorm_path
)
def
_load_norm
(
self
,
snorm_path
):
""" load global mean var file
""" load mean var file
Args:
snorm_path(str):the file path
"""
lLines
=
open
(
snorm_path
).
readlines
()
nLen
=
len
(
lLines
)
self
.
_mean
=
n
umpy
.
zeros
((
nLen
),
dtype
=
"float32"
)
self
.
_var
=
n
umpy
.
zeros
((
nLen
),
dtype
=
"float32"
)
self
.
_mean
=
n
p
.
zeros
((
nLen
),
dtype
=
"float32"
)
self
.
_var
=
n
p
.
zeros
((
nLen
),
dtype
=
"float32"
)
self
.
_nLen
=
nLen
for
nidx
,
l
in
enumerate
(
lLines
):
s
=
l
.
split
()
...
...
@@ -34,11 +38,18 @@ class TransMeanVarianceNorm(object):
def
get_mean_var
(
self
):
""" get mean and var
Args:
Returns:
(mean, var)
"""
return
(
self
.
_mean
,
self
.
_var
)
def
perform_trans
(
self
,
sample
):
""" feature = (feature - mean) * var
Args:
sample(object):input sample, contain feature numpy and label numpy
Returns:
(feature, label)
"""
(
feature
,
label
)
=
sample
shape
=
feature
.
shape
...
...
fluid/DeepASR/data_utils/trans_slit.py
已删除
100644 → 0
浏览文件 @
52cda823
#by zhxfl
import
numpy
import
math
class
TransSplit
(
object
):
""" expand feature data from shape (frame_num, frame_dim)
to shape (frame_num, frame_dim * 11)
"""
def
__init__
(
self
,
nleft_context
=
5
,
nright_context
=
5
):
self
.
_nleft_context
=
nleft_context
self
.
_nright_context
=
nright_context
fluid/DeepASR/data_utils/trans_splice.py
浏览文件 @
09fca5a6
#by zhxfl 2018.01.31
import
numpy
import
numpy
as
np
import
math
class
TransSplice
(
object
):
""" expand feature data from shape (frame_num, frame_dim)
""" copy feature context to construct new feature
expand feature data from shape (frame_num, frame_dim)
to shape (frame_num, frame_dim * 11)
Attributes:
_nleft_context(int): copy left context number
_nright_context(int): copy right context number
"""
def
__init__
(
self
,
nleft_context
=
5
,
nright_context
=
5
):
""" init construction
Args:
nleft_context(int):
nright_context(int):
"""
self
.
_nleft_context
=
nleft_context
self
.
_nright_context
=
nright_context
def
perform_trans
(
self
,
sample
):
""" splice
""" copy feature context
Args:
sample(object): input sample(feature, label)
Return:
(feature, label)
"""
(
feature
,
label
)
=
sample
nframe_num
=
feature
.
shape
[
0
]
nframe_dim
=
feature
.
shape
[
1
]
nnew_frame_dim
=
nframe_dim
*
(
self
.
_nleft_context
+
self
.
_nright_context
+
1
)
mat
=
n
umpy
.
zeros
(
mat
=
n
p
.
zeros
(
(
nframe_num
+
self
.
_nleft_context
+
self
.
_nright_context
,
nframe_dim
),
dtype
=
"float32"
)
ret
=
n
umpy
.
zeros
((
nframe_num
,
nnew_frame_dim
),
dtype
=
"float32"
)
ret
=
n
p
.
zeros
((
nframe_num
,
nnew_frame_dim
),
dtype
=
"float32"
)
#copy left
for
i
in
xrange
(
self
.
_nleft_context
):
...
...
@@ -44,7 +54,7 @@ class TransSplice(object):
mat
=
mat
.
reshape
(
mat
.
shape
[
0
]
*
mat
.
shape
[
1
])
ret
=
ret
.
reshape
(
ret
.
shape
[
0
]
*
ret
.
shape
[
1
])
for
i
in
xrange
(
nframe_num
):
n
umpy
.
copyto
(
ret
[
i
*
nnew_frame_dim
:(
i
+
1
)
*
nnew_frame_dim
],
mat
[
i
*
nframe_dim
:
i
*
nframe_dim
+
nnew_frame_dim
])
n
p
.
copyto
(
ret
[
i
*
nnew_frame_dim
:(
i
+
1
)
*
nnew_frame_dim
],
mat
[
i
*
nframe_dim
:
i
*
nframe_dim
+
nnew_frame_dim
])
ret
=
ret
.
reshape
((
nframe_num
,
nnew_frame_dim
))
return
(
ret
,
label
)
fluid/DeepASR/data_utils/util.py
浏览文件 @
09fca5a6
#by zhxfl 2018.01.31
def
to_lodtensor
(
data
,
place
):
"""convert tensor to lodtensor
"""
...
...
fluid/DeepASR/stacked_dynamic_lstm.py
浏览文件 @
09fca5a6
...
...
@@ -9,10 +9,10 @@ import time
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.profiler
as
profiler
import
data_utils.load_data
as
load_data
import
data_utils.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.trans_add_delta
as
trans_add_delta
import
data_utils.trans_splice
as
trans_splice
import
data_utils.data_read
as
reader
def
parse_args
():
...
...
@@ -61,6 +61,9 @@ def parse_args():
'--use_nvprof'
,
action
=
'store_true'
,
help
=
'If set, use nvprof for CUDA.'
)
parser
.
add_argument
(
'--mean_var'
,
type
=
str
,
help
=
'mean var path'
)
parser
.
add_argument
(
'--feature_lst'
,
type
=
str
,
help
=
'mean var path'
)
parser
.
add_argument
(
'--label_lst'
,
type
=
str
,
help
=
'mean var path'
)
args
=
parser
.
parse_args
()
return
args
...
...
@@ -159,12 +162,12 @@ def train(args):
ltrans
=
[
trans_add_delta
.
TransAddDelta
(
2
,
2
),
trans_mean_variance_norm
.
TransMeanVarianceNorm
(
"data/global_mean_var_search26kHr"
),
trans_splice
.
TransSplice
()
trans_mean_variance_norm
.
TransMeanVarianceNorm
(
args
.
mean_var
),
trans_splice
.
TransSplice
()
]
load_data
.
set_trans
(
ltrans
)
load_data
.
load_list
(
"/home/disk2/mini_speech_fbank_40/data/feature.lst"
,
"/home/disk2/mini_speech_fbank_40/data/label.lst"
)
data_reader
=
reader
.
DataRead
(
args
.
feature_lst
,
args
.
label_lst
)
data_reader
.
set_trans
(
ltrans
)
res_feature
=
fluid
.
LoDTensor
()
res_label
=
fluid
.
LoDTensor
()
...
...
@@ -175,7 +178,7 @@ def train(args):
batch_id
=
0
while
True
:
# load_data
one_batch
=
load_data
.
get_one_batch
(
args
.
batch_size
)
one_batch
=
data_reader
.
get_one_batch
(
args
.
batch_size
)
if
one_batch
==
None
:
break
(
bat_feature
,
bat_label
,
lod
)
=
one_batch
...
...
fluid/DeepASR/test/test_data_trans.py
浏览文件 @
09fca5a6
#by zhxfl 2018.01.31
import
sys
import
unittest
import
numpy
import
numpy
as
np
sys
.
path
.
append
(
"../"
)
import
data_utils.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.trans_add_delta
as
trans_add_delta
...
...
@@ -13,7 +13,7 @@ class TestTransMeanVarianceNorm(unittest.TestCase):
"""
def
test
(
self
):
feature
=
n
umpy
.
zeros
((
2
,
120
),
dtype
=
"float32"
)
feature
=
n
p
.
zeros
((
2
,
120
),
dtype
=
"float32"
)
feature
.
fill
(
1
)
trans
=
trans_mean_variance_norm
.
TransMeanVarianceNorm
(
"../data/global_mean_var_search26kHr"
)
...
...
@@ -21,7 +21,7 @@ class TestTransMeanVarianceNorm(unittest.TestCase):
(
mean
,
var
)
=
trans
.
get_mean_var
()
feature_flat1
=
feature1
.
flatten
()
feature_flat
=
feature
.
flatten
()
one
=
n
umpy
.
ones
((
1
),
dtype
=
"float32"
)
one
=
n
p
.
ones
((
1
),
dtype
=
"float32"
)
for
idx
,
val
in
enumerate
(
feature_flat1
):
cur_idx
=
idx
%
120
self
.
assertAlmostEqual
(
val
,
(
one
[
0
]
-
mean
[
cur_idx
])
*
var
[
cur_idx
])
...
...
@@ -34,7 +34,7 @@ class TestTransAddDelta(unittest.TestCase):
def
test_regress
(
self
):
"""test regress
"""
feature
=
n
umpy
.
zeros
((
14
,
120
),
dtype
=
"float32"
)
feature
=
n
p
.
zeros
((
14
,
120
),
dtype
=
"float32"
)
feature
[
0
:
5
,
0
:
40
].
fill
(
1
)
feature
[
0
+
5
,
0
:
40
].
fill
(
1
)
feature
[
1
+
5
,
0
:
40
].
fill
(
2
)
...
...
@@ -59,7 +59,7 @@ class TestTransAddDelta(unittest.TestCase):
def
test_perform
(
self
):
"""test perform
"""
feature
=
n
umpy
.
zeros
((
4
,
40
),
dtype
=
"float32"
)
feature
=
n
p
.
zeros
((
4
,
40
),
dtype
=
"float32"
)
feature
[
0
,
0
:
40
].
fill
(
1
)
feature
[
1
,
0
:
40
].
fill
(
2
)
feature
[
2
,
0
:
40
].
fill
(
3
)
...
...
@@ -83,7 +83,7 @@ class TestTransSplict(unittest.TestCase):
"""
def
test_perfrom
(
self
):
feature
=
n
umpy
.
zeros
((
8
,
10
),
dtype
=
"float32"
)
feature
=
n
p
.
zeros
((
8
,
10
),
dtype
=
"float32"
)
for
i
in
xrange
(
feature
.
shape
[
0
]):
feature
[
i
,
:].
fill
(
i
)
...
...
@@ -104,8 +104,6 @@ class TestTransSplict(unittest.TestCase):
if
cur_val
<
7
:
cur_val
+=
1.0
for
k
in
xrange
(
10
):
print
i
,
j
,
k
print
feature
[
i
].
reshape
(
11
,
10
)
self
.
assertAlmostEqual
(
feature
[
i
][
j
*
10
+
k
],
cur_val
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录