train.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17
import argparse
import ast
18 19 20 21 22 23
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.dygraph.base import to_variable

H
Hongyu Liu 已提交
24 25 26 27 28 29 30 31 32 33 34
from paddle.fluid import framework

import math
import sys

batch_size = 32
epoch = 120
IMAGENET1000 = 1281167
base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50
def parse_args():
    parser = argparse.ArgumentParser("Training for Mnist.")
    parser.add_argument(
        "--use_data_parallel",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to shuffle instances in each pass.")
    args = parser.parse_args()
    return args


args = parse_args()


51
def optimizer_setting():
H
Hongyu Liu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    total_images = IMAGENET1000

    step = int(math.ceil(float(total_images) / batch_size))

    epochs = [30, 60, 90]
    bd = [step * e for e in epochs]

    lr = []
    lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        momentum=momentum_rate,
        regularization=fluid.regularizer.L2Decay(l2_decay))

    return optimizer
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__(name_scope)

        self._conv = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

        self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True):
        super(BottleneckBlock, self).__init__(name_scope)

        self.conv0 = ConvBNLayer(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            self.full_name(),
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            self.full_name(),
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                self.full_name(),
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class ResNet(fluid.dygraph.Layer):
    def __init__(self, name_scope, layers=50, class_dim=102):
        super(ResNet, self).__init__(name_scope)

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
            self.full_name(),
            num_channels=3,
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu')
        self.pool2d_max = Pool2D(
            self.full_name(),
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        self.bottleneck_block_list = []
        num_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        self.full_name(),
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(self.full_name(),
                      size=class_dim,
                      act='softmax',
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = self.out(y)
        return y


H
Hongyu Liu 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def eval(model, data):

    model.eval()
    total_loss = 0.0
    total_acc1 = 0.0
    total_acc5 = 0.0
    total_sample = 0
    for batch_id, data in enumerate(data()):
        dy_x_data = np.array(
            [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
        if len(np.array([x[1] for x in data]).astype('int64')) != batch_size:
            continue
        y_data = np.array([x[1] for x in data]).astype('int64').reshape(
            batch_size, 1)

        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label._stop_gradient = True

        out = model(img)
        #loss = fluid.layers.cross_entropy(input=out, label=label)
        #avg_loss = fluid.layers.mean(x=loss)

        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

        #dy_out = avg_loss.numpy()

        #total_loss += dy_out
        total_acc1 += acc_top1.numpy()
        total_acc5 += acc_top5.numpy()
        total_sample += 1

        # print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
        if batch_id % 10 == 0:
            print("test | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                  ( batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample))
    print("final eval loss %0.3f acc1 %0.3f acc5 %0.3f" % \
          (total_loss / total_sample, \
           total_acc1 / total_sample, total_acc5 / total_sample))


271
def train_resnet():
272 273 274 275 276 277 278
    trainer_count = fluid.dygraph.parallel.Env().nranks
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

279 280
        resnet = ResNet("resnet")
        optimizer = optimizer_setting()
281 282 283 284

        if args.use_data_parallel:
            resnet = fluid.dygraph.parallel.DataParallel(resnet, strategy)

285 286
        train_reader = paddle.batch(
            paddle.dataset.flowers.train(use_xmap=False), batch_size=batch_size)
287
        if args.use_data_parallel:
288 289
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)
H
Hongyu Liu 已提交
290 291 292 293 294 295

        test_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)

        #file_name = './model/epoch_0.npz'
        #model_data = np.load( file_name )
296

297
        for eop in range(epoch):
H
Hongyu Liu 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310

            resnet.train()
            total_loss = 0.0
            total_acc1 = 0.0
            total_acc5 = 0.0
            total_sample = 0

            #dict_state = resnet.state_dict()

            #resnet.load_dict( model_data )

            print("load finished")

311 312 313
            for batch_id, data in enumerate(train_reader()):
                dy_x_data = np.array(
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
H
Hongyu Liu 已提交
314 315
                if len(np.array([x[1]
                                 for x in data]).astype('int64')) != batch_size:
316 317
                    continue
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
318
                    -1, 1)
319

320 321 322
                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label._stop_gradient = True
323

324 325 326
                out = resnet(img)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                avg_loss = fluid.layers.mean(x=loss)
327

H
Hongyu Liu 已提交
328 329 330
                acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
                acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

331
                dy_out = avg_loss.numpy()
332 333 334 335 336 337 338

                if args.use_data_parallel:
                    avg_loss = resnet.scale_loss(avg_loss)
                    avg_loss.backward()
                    resnet.apply_collective_grads()
                else:
                    avg_loss.backward()
339

340 341
                optimizer.minimize(avg_loss)
                resnet.clear_gradients()
342

H
Hongyu Liu 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                framework._dygraph_tracer_._clear_ops()

                total_loss += dy_out
                total_acc1 += acc_top1.numpy()
                total_acc5 += acc_top5.numpy()
                total_sample += 1

                #print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
                if batch_id % 10 == 0:
                    print( "epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                           ( eop, batch_id, total_loss / total_sample, \
                             total_acc1 / total_sample, total_acc5 / total_sample))

            print("epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                  (eop, batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample))
            resnet.eval()
            eval(resnet, test_reader)
361 362 363


if __name__ == '__main__':
364

365
    train_resnet()