Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
6bd90a39
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6bd90a39
编写于
6月 10, 2019
作者:
C
chengduo
提交者:
GitHub
6月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support multi-process for resnet and transformer. (#2360)
* support multi-process for resnet and transformer
上级
66e135cc
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
146 addition
and
17 deletion
+146
-17
dygraph/mnist/README.md
dygraph/mnist/README.md
+15
-2
dygraph/mnist/mnist_dygraph.py
dygraph/mnist/mnist_dygraph.py
+3
-1
dygraph/resnet/README.md
dygraph/resnet/README.md
+16
-0
dygraph/resnet/train.py
dygraph/resnet/train.py
+44
-6
dygraph/transformer/README.md
dygraph/transformer/README.md
+22
-1
dygraph/transformer/train.py
dygraph/transformer/train.py
+46
-7
未找到文件。
dygraph/mnist/README.md
浏览文件 @
6bd90a39
...
...
@@ -17,6 +17,21 @@
```
env CUDA_VISIBLE_DEVICES=0 python mnist_dygraph.py
```
Paddle动态图支持多进程多卡进行模型训练,启动训练的方式:
```
python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog mnist_dygraph.py --use_data_parallel 1
```
此时,程序会将每个进程的输出log导入到
`./mylog`
路径下:
```
.
├── mylog
│ ├── workerlog.0
│ ├── workerlog.1
│ ├── workerlog.2
│ └── workerlog.3
├── README.md
└── train.py
```
## 输出
执行训练开始后,将得到类似如下的输出。
...
...
@@ -58,5 +73,3 @@ with fluid.dygraph.guard():
```
text
Inference result of image/infer_3.png is: 3
```
dygraph/mnist/mnist_dygraph.py
浏览文件 @
6bd90a39
...
...
@@ -174,6 +174,7 @@ def train_mnist(args):
epoch_num
=
5
BATCH_SIZE
=
64
trainer_count
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
)
\
if
args
.
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
with
fluid
.
dygraph
.
guard
(
place
):
...
...
@@ -186,7 +187,8 @@ def train_mnist(args):
if
args
.
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_sampler
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
BATCH_SIZE
*
trainer_count
)
else
:
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
...
...
dygraph/resnet/README.md
浏览文件 @
6bd90a39
...
...
@@ -26,6 +26,22 @@ env CUDA_VISIBLE_DEVICES=0 python train.py
这里
`CUDA_VISIBLE_DEVICES=0`
表示是执行在0号设备卡上,请根据自身情况修改这个参数。
Paddle动态图支持多进程多卡进行模型训练,启动训练的方式:
```
python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog train.py --use_data_parallel 1
```
此时,程序会将每个进程的输出log导入到
`./mylog`
路径下:
```
.
├── mylog
│ ├── workerlog.0
│ ├── workerlog.1
│ ├── workerlog.2
│ └── workerlog.3
├── README.md
└── train.py
```
## 输出
执行训练开始后,将得到类似如下的输出。每一轮
`batch`
训练将会打印当前epoch、step以及loss值。当前默认执行
`epoch=10`
,
`batch_size=8`
。您可以调整参数以得到更好的训练效果,同时也意味着消耗更多的内存(显存)以及需要花费更长的时间。
```
text
...
...
dygraph/resnet/train.py
浏览文件 @
6bd90a39
...
...
@@ -13,7 +13,8 @@
# limitations under the License.
import
numpy
as
np
import
argparse
import
ast
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.layer_helper
import
LayerHelper
...
...
@@ -33,6 +34,20 @@ momentum_rate = 0.9
l2_decay
=
1e-4
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Training for Mnist."
)
parser
.
add_argument
(
"--use_data_parallel"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"The flag indicating whether to shuffle instances in each pass."
)
args
=
parser
.
parse_args
()
return
args
args
=
parse_args
()
def
optimizer_setting
():
total_images
=
IMAGENET1000
...
...
@@ -255,11 +270,27 @@ def eval(model, data):
def
train_resnet
():
with
fluid
.
dygraph
.
guard
():
trainer_count
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
)
\
if
args
.
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
with
fluid
.
dygraph
.
guard
(
place
):
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
resnet
=
ResNet
(
"resnet"
)
optimizer
=
optimizer_setting
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
)
if
args
.
use_data_parallel
:
resnet
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
resnet
,
strategy
)
if
args
.
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_sampler
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
*
trainer_count
)
else
:
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
batch_size
)
...
...
@@ -288,7 +319,7 @@ def train_resnet():
for
x
in
data
]).
astype
(
'int64'
))
!=
batch_size
:
continue
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
-
1
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
...
...
@@ -302,7 +333,13 @@ def train_resnet():
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
dy_out
=
avg_loss
.
numpy
()
avg_loss
.
backward
()
if
args
.
use_data_parallel
:
avg_loss
=
resnet
.
scale_loss
(
avg_loss
)
avg_loss
.
backward
()
resnet
.
apply_collective_grads
()
else
:
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
...
...
@@ -328,4 +365,5 @@ def train_resnet():
if
__name__
==
'__main__'
:
train_resnet
()
dygraph/transformer/README.md
浏览文件 @
6bd90a39
...
...
@@ -21,7 +21,28 @@
3.
环境依赖
### 执行训练:
利用python解释器执行train.py即可
如果是使用GPU单卡训练,启动训练的方式:
```
env CUDA_VISIBLE_DEVICES=0 python train.py
```
这里
`CUDA_VISIBLE_DEVICES=0`
表示是执行在0号设备卡上,请根据自身情况修改这个参数。
Paddle动态图支持多进程多卡进行模型训练,启动训练的方式:
```
python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog train.py --use_data_parallel 1
```
此时,程序会将每个进程的输出log导入到
`./mylog`
路径下:
```
.
├── mylog
│ ├── workerlog.0
│ ├── workerlog.1
│ ├── workerlog.2
│ └── workerlog.3
├── README.md
└── train.py
```
### 执行效果
...
...
dygraph/transformer/train.py
浏览文件 @
6bd90a39
from
__future__
import
print_function
import
argparse
import
ast
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
FC
,
to_variable
,
Layer
,
guard
import
numpy
as
np
...
...
@@ -7,6 +8,20 @@ import paddle
import
paddle.dataset.wmt16
as
wmt16
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Training for Mnist."
)
parser
.
add_argument
(
"--use_data_parallel"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"The flag indicating whether to shuffle instances in each pass."
)
args
=
parser
.
parse_args
()
return
args
args
=
parse_args
()
# Copy from models
class
TrainTaskConfig
(
object
):
"""
...
...
@@ -1080,7 +1095,13 @@ def train():
:return:
"""
with
guard
():
trainer_count
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
)
\
if
args
.
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
with
fluid
.
dygraph
.
guard
(
place
):
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
transformer
=
TransFormer
(
'transformer'
,
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
...
...
@@ -1094,10 +1115,21 @@ def train():
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.003
)
reader
=
paddle
.
batch
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
TrainTaskConfig
.
batch_size
)
if
args
.
use_data_parallel
:
transformer
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
transformer
,
strategy
)
if
args
.
use_data_parallel
:
reader
=
fluid
.
contrib
.
reader
.
distributed_sampler
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
TrainTaskConfig
.
batch_size
*
trainer_count
)
else
:
reader
=
paddle
.
batch
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
TrainTaskConfig
.
batch_size
)
for
i
in
range
(
200
):
dy_step
=
0
for
batch
in
reader
():
...
...
@@ -1108,7 +1140,14 @@ def train():
enc_inputs
,
dec_inputs
,
label
,
weights
=
create_data
(
np_values
)
dy_sum_cost
,
dy_avg_cost
,
dy_predict
,
dy_token_num
=
transformer
(
enc_inputs
,
dec_inputs
,
label
,
weights
)
dy_avg_cost
.
backward
()
if
args
.
use_data_parallel
:
dy_avg_cost
=
transformer
.
scale_loss
(
dy_avg_cost
)
dy_avg_cost
.
backward
()
transformer
.
apply_collective_grads
()
else
:
dy_avg_cost
.
backward
()
optimizer
.
minimize
(
dy_avg_cost
)
transformer
.
clear_gradients
()
dy_step
=
dy_step
+
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录