net.py 5.3 KB
Newer Older
Z
zhangwenhui03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
neural network for word2vec
"""
from __future__ import print_function
import math
import numpy as np
import paddle.fluid as fluid


Z
zhangwenhui03 已提交
23
def skip_gram_word2vec(dict_size, embedding_size, is_sparse=False, neg_num=5):
Z
zhangwenhui03 已提交
24 25 26 27 28

    datas = []
    input_word = fluid.layers.data(name="input_word", shape=[1], dtype='int64')
    true_word = fluid.layers.data(name='true_label', shape=[1], dtype='int64')
    neg_word = fluid.layers.data(
Z
zhangwenhui03 已提交
29
        name="neg_label", shape=[neg_num], dtype='int64')
Z
zhangwenhui03 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    datas.append(input_word)
    datas.append(true_word)
    datas.append(neg_word)

    py_reader = fluid.layers.create_py_reader_by_data(
        capacity=64, feed_list=datas, name='py_reader', use_double_buffer=True)

    words = fluid.layers.read_file(py_reader)
    init_width = 0.5 / embedding_size
    input_emb = fluid.layers.embedding(
        input=words[0],
        is_sparse=is_sparse,
        size=[dict_size, embedding_size],
        param_attr=fluid.ParamAttr(
            name='emb',
            initializer=fluid.initializer.Uniform(-init_width, init_width)))

    true_emb_w = fluid.layers.embedding(
        input=words[1],
        is_sparse=is_sparse,
        size=[dict_size, embedding_size],
        param_attr=fluid.ParamAttr(
            name='emb_w', initializer=fluid.initializer.Constant(value=0.0)))

    true_emb_b = fluid.layers.embedding(
        input=words[1],
        is_sparse=is_sparse,
        size=[dict_size, 1],
        param_attr=fluid.ParamAttr(
            name='emb_b', initializer=fluid.initializer.Constant(value=0.0)))
    neg_word_reshape = fluid.layers.reshape(words[2], shape=[-1, 1])
    neg_word_reshape.stop_gradient = True

    neg_emb_w = fluid.layers.embedding(
        input=neg_word_reshape,
        is_sparse=is_sparse,
        size=[dict_size, embedding_size],
        param_attr=fluid.ParamAttr(
Z
zhangwenhui03 已提交
69
            name='emb_w', learning_rate=1.0))
Z
zhangwenhui03 已提交
70 71 72 73 74 75 76 77

    neg_emb_w_re = fluid.layers.reshape(
        neg_emb_w, shape=[-1, neg_num, embedding_size])
    neg_emb_b = fluid.layers.embedding(
        input=neg_word_reshape,
        is_sparse=is_sparse,
        size=[dict_size, 1],
        param_attr=fluid.ParamAttr(
Z
zhangwenhui03 已提交
78
            name='emb_b', learning_rate=1.0))
Z
zhangwenhui03 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])
    true_logits = fluid.layers.elementwise_add(
        fluid.layers.reduce_sum(
            fluid.layers.elementwise_mul(input_emb, true_emb_w),
            dim=1,
            keep_dim=True),
        true_emb_b)
    input_emb_re = fluid.layers.reshape(
        input_emb, shape=[-1, 1, embedding_size])
    neg_matmul = fluid.layers.matmul(
        input_emb_re, neg_emb_w_re, transpose_y=True)
    neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
    neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
    #nce loss

    label_ones = fluid.layers.fill_constant_batch_size_like(
        true_logits, shape=[-1, 1], value=1.0, dtype='float32')
    label_zeros = fluid.layers.fill_constant_batch_size_like(
        true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')

    true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits,
                                                               label_ones)
    neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits,
                                                              label_zeros)
    cost = fluid.layers.elementwise_add(
Z
zhangwenhui03 已提交
105 106 107
        fluid.layers.reduce_sum(
            true_xent, dim=1),
        fluid.layers.reduce_sum(
Z
zhangwenhui03 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            neg_xent, dim=1))
    avg_cost = fluid.layers.reduce_mean(cost)
    return avg_cost, py_reader


def infer_network(vocab_size, emb_size):
    analogy_a = fluid.layers.data(name="analogy_a", shape=[1], dtype='int64')
    analogy_b = fluid.layers.data(name="analogy_b", shape=[1], dtype='int64')
    analogy_c = fluid.layers.data(name="analogy_c", shape=[1], dtype='int64')
    all_label = fluid.layers.data(
        name="all_label",
        shape=[vocab_size, 1],
        dtype='int64',
        append_batch_size=False)
    emb_all_label = fluid.layers.embedding(
        input=all_label, size=[vocab_size, emb_size], param_attr="emb")

    emb_a = fluid.layers.embedding(
        input=analogy_a, size=[vocab_size, emb_size], param_attr="emb")
    emb_b = fluid.layers.embedding(
        input=analogy_b, size=[vocab_size, emb_size], param_attr="emb")
    emb_c = fluid.layers.embedding(
        input=analogy_c, size=[vocab_size, emb_size], param_attr="emb")
    target = fluid.layers.elementwise_add(
        fluid.layers.elementwise_sub(emb_b, emb_a), emb_c)
    emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1)
    dist = fluid.layers.matmul(x=target, y=emb_all_label_l2, transpose_y=True)
    values, pred_idx = fluid.layers.topk(input=dist, k=4)
    return values, pred_idx