# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ neural network for word2vec """ from __future__ import print_function import math import numpy as np import paddle.fluid as fluid def skip_gram_word2vec(dict_size, embedding_size, is_sparse=False, neg_num=5): datas = [] input_word = fluid.layers.data(name="input_word", shape=[1], dtype='int64') true_word = fluid.layers.data(name='true_label', shape=[1], dtype='int64') neg_word = fluid.layers.data( name="neg_label", shape=[neg_num], dtype='int64') datas.append(input_word) datas.append(true_word) datas.append(neg_word) py_reader = fluid.layers.create_py_reader_by_data( capacity=64, feed_list=datas, name='py_reader', use_double_buffer=True) words = fluid.layers.read_file(py_reader) init_width = 0.5 / embedding_size input_emb = fluid.layers.embedding( input=words[0], is_sparse=is_sparse, size=[dict_size, embedding_size], param_attr=fluid.ParamAttr( name='emb', initializer=fluid.initializer.Uniform(-init_width, init_width))) true_emb_w = fluid.layers.embedding( input=words[1], is_sparse=is_sparse, size=[dict_size, embedding_size], param_attr=fluid.ParamAttr( name='emb_w', initializer=fluid.initializer.Constant(value=0.0))) true_emb_b = fluid.layers.embedding( input=words[1], is_sparse=is_sparse, size=[dict_size, 1], param_attr=fluid.ParamAttr( name='emb_b', initializer=fluid.initializer.Constant(value=0.0))) neg_word_reshape = fluid.layers.reshape(words[2], shape=[-1, 1]) neg_word_reshape.stop_gradient = True neg_emb_w = fluid.layers.embedding( input=neg_word_reshape, is_sparse=is_sparse, size=[dict_size, embedding_size], param_attr=fluid.ParamAttr( name='emb_w', learning_rate=1.0)) neg_emb_w_re = fluid.layers.reshape( neg_emb_w, shape=[-1, neg_num, embedding_size]) neg_emb_b = fluid.layers.embedding( input=neg_word_reshape, is_sparse=is_sparse, size=[dict_size, 1], param_attr=fluid.ParamAttr( name='emb_b', learning_rate=1.0)) neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num]) true_logits = fluid.layers.elementwise_add( fluid.layers.reduce_sum( fluid.layers.elementwise_mul(input_emb, true_emb_w), dim=1, keep_dim=True), true_emb_b) input_emb_re = fluid.layers.reshape( input_emb, shape=[-1, 1, embedding_size]) neg_matmul = fluid.layers.matmul( input_emb_re, neg_emb_w_re, transpose_y=True) neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num]) neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec) #nce loss label_ones = fluid.layers.fill_constant_batch_size_like( true_logits, shape=[-1, 1], value=1.0, dtype='float32') label_zeros = fluid.layers.fill_constant_batch_size_like( true_logits, shape=[-1, neg_num], value=0.0, dtype='float32') true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits, label_ones) neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits, label_zeros) cost = fluid.layers.elementwise_add( fluid.layers.reduce_sum( true_xent, dim=1), fluid.layers.reduce_sum( neg_xent, dim=1)) avg_cost = fluid.layers.reduce_mean(cost) return avg_cost, py_reader def infer_network(vocab_size, emb_size): analogy_a = fluid.layers.data(name="analogy_a", shape=[1], dtype='int64') analogy_b = fluid.layers.data(name="analogy_b", shape=[1], dtype='int64') analogy_c = fluid.layers.data(name="analogy_c", shape=[1], dtype='int64') all_label = fluid.layers.data( name="all_label", shape=[vocab_size, 1], dtype='int64', append_batch_size=False) emb_all_label = fluid.layers.embedding( input=all_label, size=[vocab_size, emb_size], param_attr="emb") emb_a = fluid.layers.embedding( input=analogy_a, size=[vocab_size, emb_size], param_attr="emb") emb_b = fluid.layers.embedding( input=analogy_b, size=[vocab_size, emb_size], param_attr="emb") emb_c = fluid.layers.embedding( input=analogy_c, size=[vocab_size, emb_size], param_attr="emb") target = fluid.layers.elementwise_add( fluid.layers.elementwise_sub(emb_b, emb_a), emb_c) emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1) dist = fluid.layers.matmul(x=target, y=emb_all_label_l2, transpose_y=True) values, pred_idx = fluid.layers.topk(input=dist, k=4) return values, pred_idx