pascal_voc_conf.py 2.5 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from easydict import EasyDict as edict
import numpy as np

__C = edict()
cfg = __C

__C.TRAIN = edict()

__C.IMG_WIDTH = 300
__C.IMG_HEIGHT = 300
__C.IMG_CHANNEL = 3
__C.CLASS_NUM = 21
__C.BACKGROUND_ID = 0

# training settings
__C.TRAIN.LEARNING_RATE = 0.001 / 4
__C.TRAIN.MOMENTUM = 0.9
__C.TRAIN.BATCH_SIZE = 32
__C.TRAIN.NUM_PASS = 200
__C.TRAIN.L2REGULARIZATION = 0.0005 * 4
__C.TRAIN.LEARNING_RATE_DECAY_A = 0.1
__C.TRAIN.LEARNING_RATE_DECAY_B = 16551 * 80
__C.TRAIN.LEARNING_RATE_SCHEDULE = 'discexp'

__C.NET = edict()

# configuration for multibox_loss_layer
__C.NET.MBLOSS = edict()
__C.NET.MBLOSS.OVERLAP_THRESHOLD = 0.5
__C.NET.MBLOSS.NEG_POS_RATIO = 3.0
__C.NET.MBLOSS.NEG_OVERLAP = 0.5

# configuration for detection_map
__C.NET.DETMAP = edict()
__C.NET.DETMAP.OVERLAP_THRESHOLD = 0.5
__C.NET.DETMAP.EVAL_DIFFICULT = False
__C.NET.DETMAP.AP_TYPE = "11point"

# configuration for detection_output_layer
__C.NET.DETOUT = edict()
__C.NET.DETOUT.CONFIDENCE_THRESHOLD = 0.01
__C.NET.DETOUT.NMS_THRESHOLD = 0.45
__C.NET.DETOUT.NMS_TOP_K = 400
__C.NET.DETOUT.KEEP_TOP_K = 200

# configuration for priorbox_layer from conv4_3
__C.NET.CONV4 = edict()
__C.NET.CONV4.PB = edict()
__C.NET.CONV4.PB.MIN_SIZE = [30]
Y
yangyaming 已提交
50
__C.NET.CONV4.PB.MAX_SIZE = []
Y
yangyaming 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
__C.NET.CONV4.PB.ASPECT_RATIO = [2.]
__C.NET.CONV4.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]

# configuration for priorbox_layer from fc7
__C.NET.FC7 = edict()
__C.NET.FC7.PB = edict()
__C.NET.FC7.PB.MIN_SIZE = [60]
__C.NET.FC7.PB.MAX_SIZE = [114]
__C.NET.FC7.PB.ASPECT_RATIO = [2., 3.]
__C.NET.FC7.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]

# configuration for priorbox_layer from conv6_2
__C.NET.CONV6 = edict()
__C.NET.CONV6.PB = edict()
__C.NET.CONV6.PB.MIN_SIZE = [114]
__C.NET.CONV6.PB.MAX_SIZE = [168]
__C.NET.CONV6.PB.ASPECT_RATIO = [2., 3.]
__C.NET.CONV6.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]

# configuration for priorbox_layer from conv7_2
__C.NET.CONV7 = edict()
__C.NET.CONV7.PB = edict()
__C.NET.CONV7.PB.MIN_SIZE = [168]
__C.NET.CONV7.PB.MAX_SIZE = [222]
__C.NET.CONV7.PB.ASPECT_RATIO = [2., 3.]
__C.NET.CONV7.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]

# configuration for priorbox_layer from conv8_2
__C.NET.CONV8 = edict()
__C.NET.CONV8.PB = edict()
__C.NET.CONV8.PB.MIN_SIZE = [222]
__C.NET.CONV8.PB.MAX_SIZE = [276]
__C.NET.CONV8.PB.ASPECT_RATIO = [2., 3.]
__C.NET.CONV8.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]

# configuration for priorbox_layer from pool6
__C.NET.POOL6 = edict()
__C.NET.POOL6.PB = edict()
__C.NET.POOL6.PB.MIN_SIZE = [276]
__C.NET.POOL6.PB.MAX_SIZE = [330]
__C.NET.POOL6.PB.ASPECT_RATIO = [2., 3.]
__C.NET.POOL6.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]