from easydict import EasyDict as edict import numpy as np __C = edict() cfg = __C __C.TRAIN = edict() __C.IMG_WIDTH = 300 __C.IMG_HEIGHT = 300 __C.IMG_CHANNEL = 3 __C.CLASS_NUM = 21 __C.BACKGROUND_ID = 0 # training settings __C.TRAIN.LEARNING_RATE = 0.001 / 4 __C.TRAIN.MOMENTUM = 0.9 __C.TRAIN.BATCH_SIZE = 32 __C.TRAIN.NUM_PASS = 200 __C.TRAIN.L2REGULARIZATION = 0.0005 * 4 __C.TRAIN.LEARNING_RATE_DECAY_A = 0.1 __C.TRAIN.LEARNING_RATE_DECAY_B = 16551 * 80 __C.TRAIN.LEARNING_RATE_SCHEDULE = 'discexp' __C.NET = edict() # configuration for multibox_loss_layer __C.NET.MBLOSS = edict() __C.NET.MBLOSS.OVERLAP_THRESHOLD = 0.5 __C.NET.MBLOSS.NEG_POS_RATIO = 3.0 __C.NET.MBLOSS.NEG_OVERLAP = 0.5 # configuration for detection_map __C.NET.DETMAP = edict() __C.NET.DETMAP.OVERLAP_THRESHOLD = 0.5 __C.NET.DETMAP.EVAL_DIFFICULT = False __C.NET.DETMAP.AP_TYPE = "11point" # configuration for detection_output_layer __C.NET.DETOUT = edict() __C.NET.DETOUT.CONFIDENCE_THRESHOLD = 0.01 __C.NET.DETOUT.NMS_THRESHOLD = 0.45 __C.NET.DETOUT.NMS_TOP_K = 400 __C.NET.DETOUT.KEEP_TOP_K = 200 # configuration for priorbox_layer from conv4_3 __C.NET.CONV4 = edict() __C.NET.CONV4.PB = edict() __C.NET.CONV4.PB.MIN_SIZE = [30] __C.NET.CONV4.PB.MAX_SIZE = [] __C.NET.CONV4.PB.ASPECT_RATIO = [2.] __C.NET.CONV4.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2] # configuration for priorbox_layer from fc7 __C.NET.FC7 = edict() __C.NET.FC7.PB = edict() __C.NET.FC7.PB.MIN_SIZE = [60] __C.NET.FC7.PB.MAX_SIZE = [114] __C.NET.FC7.PB.ASPECT_RATIO = [2., 3.] __C.NET.FC7.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2] # configuration for priorbox_layer from conv6_2 __C.NET.CONV6 = edict() __C.NET.CONV6.PB = edict() __C.NET.CONV6.PB.MIN_SIZE = [114] __C.NET.CONV6.PB.MAX_SIZE = [168] __C.NET.CONV6.PB.ASPECT_RATIO = [2., 3.] __C.NET.CONV6.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2] # configuration for priorbox_layer from conv7_2 __C.NET.CONV7 = edict() __C.NET.CONV7.PB = edict() __C.NET.CONV7.PB.MIN_SIZE = [168] __C.NET.CONV7.PB.MAX_SIZE = [222] __C.NET.CONV7.PB.ASPECT_RATIO = [2., 3.] __C.NET.CONV7.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2] # configuration for priorbox_layer from conv8_2 __C.NET.CONV8 = edict() __C.NET.CONV8.PB = edict() __C.NET.CONV8.PB.MIN_SIZE = [222] __C.NET.CONV8.PB.MAX_SIZE = [276] __C.NET.CONV8.PB.ASPECT_RATIO = [2., 3.] __C.NET.CONV8.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2] # configuration for priorbox_layer from pool6 __C.NET.POOL6 = edict() __C.NET.POOL6.PB = edict() __C.NET.POOL6.PB.MIN_SIZE = [276] __C.NET.POOL6.PB.MAX_SIZE = [330] __C.NET.POOL6.PB.ASPECT_RATIO = [2., 3.] __C.NET.POOL6.PB.VARIANCE = [0.1, 0.1, 0.2, 0.2]