train.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8
"""
    Contains training script for machine translation with external memory.
"""
import argparse
import sys
import gzip
import distutils.util
import random
9

10 11
import paddle.v2 as paddle
from external_memory import ExternalMemory
12 13
from model import memory_enhanced_seq2seq
from data_utils import reader_append_wrapper
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    "--dict_size",
    default=30000,
    type=int,
    help="Vocabulary size. (default: %(default)s)")
parser.add_argument(
    "--word_vec_dim",
    default=512,
    type=int,
    help="Word embedding size. (default: %(default)s)")
parser.add_argument(
    "--hidden_size",
    default=1024,
    type=int,
    help="Hidden cell number in RNN. (default: %(default)s)")
parser.add_argument(
    "--memory_slot_num",
    default=8,
    type=int,
    help="External memory slot number. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=False,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
    "--trainer_count",
    default=1,
    type=int,
    help="Trainer number. (default: %(default)s)")
parser.add_argument(
    "--num_passes",
    default=100,
    type=int,
    help="Training epochs. (default: %(default)s)")
parser.add_argument(
    "--batch_size",
    default=5,
    type=int,
    help="Batch size. (default: %(default)s)")
parser.add_argument(
    "--memory_perturb_stddev",
    default=0.1,
    type=float,
    help="Memory perturb stddev for memory initialization."
    "(default: %(default)s)")
args = parser.parse_args()


def train():
    """
    For training.
    """
69 70 71 72 73 74
    # create optimizer
    optimizer = paddle.optimizer.Adam(
        learning_rate=5e-5,
        gradient_clipping_threshold=5,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4))

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    # create network config
    source_words = paddle.layer.data(
        name="source_words",
        type=paddle.data_type.integer_value_sequence(args.dict_size))
    target_words = paddle.layer.data(
        name="target_words",
        type=paddle.data_type.integer_value_sequence(args.dict_size))
    target_next_words = paddle.layer.data(
        name='target_next_words',
        type=paddle.data_type.integer_value_sequence(args.dict_size))
    cost = memory_enhanced_seq2seq(
        encoder_input=source_words,
        decoder_input=target_words,
        decoder_target=target_next_words,
        hidden_size=args.hidden_size,
        word_vec_dim=args.word_vec_dim,
        dict_size=args.dict_size,
        is_generating=False,
        beam_size=None)

95
    # create parameters and trainer
96
    parameters = paddle.parameters.create(cost)
97 98 99
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    # create data readers
    feeding = {
        "source_words": 0,
        "target_words": 1,
        "target_next_words": 2,
        "bounded_memory_perturbation": 3
    }
    random.seed(0)  # for keeping consitancy for multiple runs
    bounded_memory_perturbation = [[
        random.gauss(0, args.memory_perturb_stddev)
        for i in xrange(args.hidden_size)
    ] for j in xrange(args.memory_slot_num)]
    train_append_reader = reader_append_wrapper(
        reader=paddle.dataset.wmt14.train(args.dict_size),
        append_tuple=(bounded_memory_perturbation, ))
    train_batch_reader = paddle.batch(
117 118
        reader=paddle.reader.shuffle(
            reader=train_append_reader, buf_size=8192),
119 120 121 122 123
        batch_size=args.batch_size)
    test_append_reader = reader_append_wrapper(
        reader=paddle.dataset.wmt14.test(args.dict_size),
        append_tuple=(bounded_memory_perturbation, ))
    test_batch_reader = paddle.batch(
124 125
        reader=paddle.reader.shuffle(
            reader=test_append_reader, buf_size=8192),
126 127 128 129 130 131 132 133 134
        batch_size=args.batch_size)

    # create event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 10 == 0:
                print "Pass: %d, Batch: %d, TrainCost: %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
                with gzip.open("checkpoints/params.latest.tar.gz", 'w') as f:
135
                    trainer.save_parameter_to_tar(f)
136 137 138 139 140
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(reader=test_batch_reader, feeding=feeding)
R
ranqiu 已提交
141
            print "Pass: %d, TestCost: %f, %s" % (event.pass_id, result.cost,
142 143 144
                                                  result.metrics)
            with gzip.open("checkpoints/params.pass-%d.tar.gz" % event.pass_id,
                           'w') as f:
145
                trainer.save_parameter_to_tar(f)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

    # run train
    if not os.path.exists('checkpoints'):
        os.mkdir('checkpoints')
    trainer.train(
        reader=train_batch_reader,
        event_handler=event_handler,
        num_passes=args.num_passes,
        feeding=feeding)


def main():
    paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
    train()


if __name__ == '__main__':
    main()