""" Contains training script for machine translation with external memory. """ import argparse import sys import gzip import distutils.util import random import paddle.v2 as paddle from external_memory import ExternalMemory from model import memory_enhanced_seq2seq from data_utils import reader_append_wrapper parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--dict_size", default=30000, type=int, help="Vocabulary size. (default: %(default)s)") parser.add_argument( "--word_vec_dim", default=512, type=int, help="Word embedding size. (default: %(default)s)") parser.add_argument( "--hidden_size", default=1024, type=int, help="Hidden cell number in RNN. (default: %(default)s)") parser.add_argument( "--memory_slot_num", default=8, type=int, help="External memory slot number. (default: %(default)s)") parser.add_argument( "--use_gpu", default=False, type=distutils.util.strtobool, help="Use gpu or not. (default: %(default)s)") parser.add_argument( "--trainer_count", default=1, type=int, help="Trainer number. (default: %(default)s)") parser.add_argument( "--num_passes", default=100, type=int, help="Training epochs. (default: %(default)s)") parser.add_argument( "--batch_size", default=5, type=int, help="Batch size. (default: %(default)s)") parser.add_argument( "--memory_perturb_stddev", default=0.1, type=float, help="Memory perturb stddev for memory initialization." "(default: %(default)s)") args = parser.parse_args() def train(): """ For training. """ # create optimizer optimizer = paddle.optimizer.Adam( learning_rate=5e-5, gradient_clipping_threshold=5, regularization=paddle.optimizer.L2Regularization(rate=8e-4)) # create network config source_words = paddle.layer.data( name="source_words", type=paddle.data_type.integer_value_sequence(args.dict_size)) target_words = paddle.layer.data( name="target_words", type=paddle.data_type.integer_value_sequence(args.dict_size)) target_next_words = paddle.layer.data( name='target_next_words', type=paddle.data_type.integer_value_sequence(args.dict_size)) cost = memory_enhanced_seq2seq( encoder_input=source_words, decoder_input=target_words, decoder_target=target_next_words, hidden_size=args.hidden_size, word_vec_dim=args.word_vec_dim, dict_size=args.dict_size, is_generating=False, beam_size=None) # create parameters and trainer parameters = paddle.parameters.create(cost) trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer) # create data readers feeding = { "source_words": 0, "target_words": 1, "target_next_words": 2, "bounded_memory_perturbation": 3 } random.seed(0) # for keeping consitancy for multiple runs bounded_memory_perturbation = [[ random.gauss(0, args.memory_perturb_stddev) for i in xrange(args.hidden_size) ] for j in xrange(args.memory_slot_num)] train_append_reader = reader_append_wrapper( reader=paddle.dataset.wmt14.train(args.dict_size), append_tuple=(bounded_memory_perturbation, )) train_batch_reader = paddle.batch( reader=paddle.reader.shuffle( reader=train_append_reader, buf_size=8192), batch_size=args.batch_size) test_append_reader = reader_append_wrapper( reader=paddle.dataset.wmt14.test(args.dict_size), append_tuple=(bounded_memory_perturbation, )) test_batch_reader = paddle.batch( reader=paddle.reader.shuffle( reader=test_append_reader, buf_size=8192), batch_size=args.batch_size) # create event handler def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 10 == 0: print "Pass: %d, Batch: %d, TrainCost: %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics) with gzip.open("checkpoints/params.latest.tar.gz", 'w') as f: trainer.save_parameter_to_tar(f) else: sys.stdout.write('.') sys.stdout.flush() if isinstance(event, paddle.event.EndPass): result = trainer.test(reader=test_batch_reader, feeding=feeding) print "Pass: %d, TestCost: %f, %s" % (event.pass_id, result.cost, result.metrics) with gzip.open("checkpoints/params.pass-%d.tar.gz" % event.pass_id, 'w') as f: trainer.save_parameter_to_tar(f) # run train if not os.path.exists('checkpoints'): os.mkdir('checkpoints') trainer.train( reader=train_batch_reader, event_handler=event_handler, num_passes=args.num_passes, feeding=feeding) def main(): paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count) train() if __name__ == '__main__': main()