evaluation.py 4.6 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yibing Liu 已提交
14 15 16 17 18 19 20
"""
Evaluation
"""

import sys
import six
import numpy as np
P
pkpk 已提交
21

Y
Yibing Liu 已提交
22 23 24 25 26

def evaluate_ubuntu(file_path):
    """
    Evaluate on ubuntu data
    """
P
pkpk 已提交
27

Y
Yibing Liu 已提交
28 29 30 31 32 33 34
    def get_p_at_n_in_m(data, n, m, ind):
        """
        Recall n at m
        """
        pos_score = data[ind][0]
        curr = data[ind:ind + m]
        curr = sorted(curr, key=lambda x: x[0], reverse=True)
P
pkpk 已提交
35

Y
Yibing Liu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        if curr[n - 1][0] <= pos_score:
            return 1
        return 0

    data = []
    with open(file_path, 'r') as file:
        for line in file:
            line = line.strip()
            tokens = line.split("\t")

            if len(tokens) != 2:
                continue

            data.append((float(tokens[0]), int(tokens[1])))

    #assert len(data) % 10 == 0

    p_at_1_in_2 = 0.0
    p_at_1_in_10 = 0.0
    p_at_2_in_10 = 0.0
    p_at_5_in_10 = 0.0

    length = len(data) // 10

    for i in six.moves.xrange(0, length):
        ind = i * 10
        assert data[ind][1] == 1

        p_at_1_in_2 += get_p_at_n_in_m(data, 1, 2, ind)
        p_at_1_in_10 += get_p_at_n_in_m(data, 1, 10, ind)
        p_at_2_in_10 += get_p_at_n_in_m(data, 2, 10, ind)
        p_at_5_in_10 += get_p_at_n_in_m(data, 5, 10, ind)

    result_dict = {
        "1_in_2": p_at_1_in_2 / length,
        "1_in_10": p_at_1_in_10 / length,
        "2_in_10": p_at_2_in_10 / length,
P
pkpk 已提交
73 74
        "5_in_10": p_at_5_in_10 / length
    }
Y
Yibing Liu 已提交
75 76 77 78 79 80 81 82

    return result_dict


def evaluate_douban(file_path):
    """
    Evaluate douban data
    """
P
pkpk 已提交
83

Y
Yibing Liu 已提交
84 85 86 87 88 89 90 91 92 93 94
    def mean_average_precision(sort_data):
        """
        Evaluate mean average precision
        """
        count_1 = 0
        sum_precision = 0
        for index in six.moves.xrange(len(sort_data)):
            if sort_data[index][1] == 1:
                count_1 += 1
                sum_precision += 1.0 * count_1 / (index + 1)
        return sum_precision / count_1
P
pkpk 已提交
95

Y
Yibing Liu 已提交
96 97 98 99 100 101 102
    def mean_reciprocal_rank(sort_data):
        """
        Evaluate MRR
        """
        sort_lable = [s_d[1] for s_d in sort_data]
        assert 1 in sort_lable
        return 1.0 / (1 + sort_lable.index(1))
P
pkpk 已提交
103

Y
Yibing Liu 已提交
104 105 106 107 108 109 110 111
    def precision_at_position_1(sort_data):
        """
        Evaluate precision
        """
        if sort_data[0][1] == 1:
            return 1
        else:
            return 0
P
pkpk 已提交
112

Y
Yibing Liu 已提交
113 114 115 116 117 118 119
    def recall_at_position_k_in_10(sort_data, k):
        """"
        Evaluate recall
        """
        sort_lable = [s_d[1] for s_d in sort_data]
        select_lable = sort_lable[:k]
        return 1.0 * select_lable.count(1) / sort_lable.count(1)
P
pkpk 已提交
120

Y
Yibing Liu 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def evaluation_one_session(data):
        """
        Evaluate one session
        """
        sort_data = sorted(data, key=lambda x: x[0], reverse=True)
        m_a_p = mean_average_precision(sort_data)
        m_r_r = mean_reciprocal_rank(sort_data)
        p_1 = precision_at_position_1(sort_data)
        r_1 = recall_at_position_k_in_10(sort_data, 1)
        r_2 = recall_at_position_k_in_10(sort_data, 2)
        r_5 = recall_at_position_k_in_10(sort_data, 5)
        return m_a_p, m_r_r, p_1, r_1, r_2, r_5

    sum_m_a_p = 0
    sum_m_r_r = 0
    sum_p_1 = 0
    sum_r_1 = 0
    sum_r_2 = 0
    sum_r_5 = 0
    i = 0
    total_num = 0
    with open(file_path, 'r') as infile:
        for line in infile:
            if i % 10 == 0:
                data = []

            tokens = line.strip().split('\t')
            data.append((float(tokens[0]), int(tokens[1])))
            if i % 10 == 9:
                total_num += 1
                m_a_p, m_r_r, p_1, r_1, r_2, r_5 = evaluation_one_session(data)
                sum_m_a_p += m_a_p
                sum_m_r_r += m_r_r
                sum_p_1 += p_1
                sum_r_1 += r_1
                sum_r_2 += r_2
                sum_r_5 += r_5
            i += 1

    result_dict = {
        "MAP": 1.0 * sum_m_a_p / total_num,
        "MRR": 1.0 * sum_m_r_r / total_num,
        "P_1": 1.0 * sum_p_1 / total_num,
        "1_in_10": 1.0 * sum_r_1 / total_num,
        "2_in_10": 1.0 * sum_r_2 / total_num,
P
pkpk 已提交
166 167
        "5_in_10": 1.0 * sum_r_5 / total_num
    }
Y
Yibing Liu 已提交
168
    return result_dict