widerface_eval.py 12.6 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
baiyfbupt 已提交
14 15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
18 19 20 21 22 23 24
import os
import time
import numpy as np
import argparse
import functools
from PIL import Image

25 26 27 28 29 30 31 32 33 34 35 36 37
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)


Q
qingqing01 已提交
38 39 40
import paddle.fluid as fluid
import reader
from pyramidbox import PyramidBox
41
from visualize import draw_bboxes
Q
qingqing01 已提交
42 43 44
from utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
Q
qingqing01 已提交
45

Q
qingqing01 已提交
46
# yapf: disable
47 48 49 50 51 52 53 54 55
add_arg('use_gpu',         bool,  True,                              "Whether use GPU or not.")
add_arg('use_pyramidbox',  bool,  True,                              "Whether use PyramidBox model.")
add_arg('data_dir',        str,   'data/WIDER_val/images/',          "The validation dataset path.")
add_arg('model_dir',       str,   '',                                "The model path.")
add_arg('pred_dir',        str,   'pred',                            "The path to save the evaluation results.")
add_arg('file_list',       str,   'data/wider_face_split/wider_face_val_bbx_gt.txt', "The validation dataset path.")
add_arg('infer',           bool,  False,                             "Whether do infer or eval.")
add_arg('confs_threshold', float, 0.15,                              "Confidence threshold to draw bbox.")
add_arg('image_path',      str,   '',                                "The image used to inference and visualize.")
Q
qingqing01 已提交
56 57 58
# yapf: enable


Q
qingqing01 已提交
59 60 61 62 63 64
def infer(args, config):
    model_dir = args.model_dir
    pred_dir = args.pred_dir
    if not os.path.exists(model_dir):
        raise ValueError("The model path [%s] does not exist." % (model_dir))

65 66 67 68 69
    if args.infer:
        image_path = args.image_path
        image = Image.open(image_path)
        if image.mode == 'L':
            image = img.convert('RGB')
Q
qingqing01 已提交
70
        shrink, max_shrink = get_shrink(image.size[1], image.size[0])
Q
qingqing01 已提交
71

Q
qingqing01 已提交
72
        det0 = detect_face(image, shrink)
73 74 75 76 77 78 79 80 81
        if args.use_gpu:
            det1 = flip_test(image, shrink)
            [det2, det3] = multi_scale_test(image, max_shrink)
            det4 = multi_scale_test_pyramid(image, max_shrink)
            det = np.row_stack((det0, det1, det2, det3, det4))
            dets = bbox_vote(det)
        else:
            # when infer on cpu, use a simple case
            dets = det0
Q
qingqing01 已提交
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96
        keep_index = np.where(dets[:, 4] >= args.confs_threshold)[0]
        dets = dets[keep_index, :]
        draw_bboxes(image_path, dets[:, 0:4])
    else:
        test_reader = reader.test(config, args.file_list)
        for image, image_path in test_reader():
            shrink, max_shrink = get_shrink(image.size[1], image.size[0])

            det0 = detect_face(image, shrink)
            det1 = flip_test(image, shrink)
            [det2, det3] = multi_scale_test(image, max_shrink)
            det4 = multi_scale_test_pyramid(image, max_shrink)
            det = np.row_stack((det0, det1, det2, det3, det4))
            dets = bbox_vote(det)
Q
qingqing01 已提交
97

98 99 100
            save_widerface_bboxes(image_path, dets, pred_dir)

        print("Finish evaluation.")
Q
qingqing01 已提交
101 102 103 104 105 106 107 108 109 110 111


def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
    """
    Save predicted results, including bbox and score into text file.
    Args:
        image_path (string): file name.
        bboxes_scores (np.array|list): the predicted bboxed and scores, layout
            is (xmin, ymin, xmax, ymax, score)
        output_dir (string): output directory.
    """
B
baiyfbupt 已提交
112 113
    image_name = image_path.split('/')[-1]
    image_class = image_path.split('/')[-2]
Q
qingqing01 已提交
114 115 116 117 118 119 120 121 122 123 124

    odir = os.path.join(output_dir, image_class)
    if not os.path.exists(odir):
        os.makedirs(odir)

    ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
    f = open(ofname, 'w')
    f.write('{:s}\n'.format(image_class + '/' + image_name))
    f.write('{:d}\n'.format(bboxes_scores.shape[0]))
    for box_score in bboxes_scores:
        xmin, ymin, xmax, ymax, score = box_score
B
baiyfbupt 已提交
125 126
        f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
            xmax - xmin + 1), (ymax - ymin + 1), score))
Q
qingqing01 已提交
127 128
    f.close()
    print("The predicted result is saved as {}".format(ofname))
B
baiyfbupt 已提交
129 130


Q
qingqing01 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
def detect_face(image, shrink):
    image_shape = [3, image.size[1], image.size[0]]
    if shrink != 1:
        h, w = int(image_shape[1] * shrink), int(image_shape[2] * shrink)
        image = image.resize((w, h), Image.ANTIALIAS)
        image_shape = [3, h, w]

    img = np.array(image)
    img = reader.to_chw_bgr(img)
    mean = [104., 117., 123.]
    scale = 0.007843
    img = img.astype('float32')
    img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
    img = img * scale
    img = [img]
    img = np.array(img)

148 149 150 151 152
    detection, = exe.run(infer_program,
                         feed={'image': img},
                         fetch_list=fetches,
                         return_numpy=False)
    detection = np.array(detection)
Q
qingqing01 已提交
153
    # layout: xmin, ymin, xmax. ymax, score
J
jerrywgz 已提交
154
    if np.prod(detection.shape) == 1:
Q
qingqing01 已提交
155 156 157 158 159 160 161 162 163 164
        print("No face detected")
        return np.array([[0, 0, 0, 0, 0]])
    det_conf = detection[:, 1]
    det_xmin = image_shape[2] * detection[:, 2] / shrink
    det_ymin = image_shape[1] * detection[:, 3] / shrink
    det_xmax = image_shape[2] * detection[:, 4] / shrink
    det_ymax = image_shape[1] * detection[:, 5] / shrink

    det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
    return det
Q
qingqing01 已提交
165 166


B
baiyfbupt 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def bbox_vote(det):
    order = det[:, 4].ravel().argsort()[::-1]
    det = det[order, :]
    if det.shape[0] == 0:
        dets = np.array([[10, 10, 20, 20, 0.002]])
        det = np.empty(shape=[0, 5])
    while det.shape[0] > 0:
        # IOU
        area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
        xx1 = np.maximum(det[0, 0], det[:, 0])
        yy1 = np.maximum(det[0, 1], det[:, 1])
        xx2 = np.minimum(det[0, 2], det[:, 2])
        yy2 = np.minimum(det[0, 3], det[:, 3])
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        o = inter / (area[0] + area[:] - inter)

Q
qingqing01 已提交
185
        # nms
B
baiyfbupt 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        merge_index = np.where(o >= 0.3)[0]
        det_accu = det[merge_index, :]
        det = np.delete(det, merge_index, 0)
        if merge_index.shape[0] <= 1:
            if det.shape[0] == 0:
                try:
                    dets = np.row_stack((dets, det_accu))
                except:
                    dets = det_accu
            continue
        det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
        max_score = np.max(det_accu[:, 4])
        det_accu_sum = np.zeros((1, 5))
        det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
                                      axis=0) / np.sum(det_accu[:, -1:])
        det_accu_sum[:, 4] = max_score
        try:
            dets = np.row_stack((dets, det_accu_sum))
        except:
            dets = det_accu_sum
    dets = dets[0:750, :]
    return dets
Q
qingqing01 已提交
208 209


B
baiyfbupt 已提交
210
def flip_test(image, shrink):
211 212
    img = image.transpose(Image.FLIP_LEFT_RIGHT)
    det_f = detect_face(img, shrink)
B
baiyfbupt 已提交
213
    det_t = np.zeros(det_f.shape)
214
    # image.size: [width, height]
B
baiyfbupt 已提交
215
    det_t[:, 0] = image.size[0] - det_f[:, 2]
B
baiyfbupt 已提交
216
    det_t[:, 1] = det_f[:, 1]
B
baiyfbupt 已提交
217
    det_t[:, 2] = image.size[0] - det_f[:, 0]
B
baiyfbupt 已提交
218 219 220 221 222
    det_t[:, 3] = det_f[:, 3]
    det_t[:, 4] = det_f[:, 4]
    return det_t


B
baiyfbupt 已提交
223
def multi_scale_test(image, max_shrink):
Q
qingqing01 已提交
224
    # Shrink detecting is only used to detect big faces
B
baiyfbupt 已提交
225 226
    st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
    det_s = detect_face(image, st)
B
baiyfbupt 已提交
227 228 229 230
    index = np.where(
        np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
        > 30)[0]
    det_s = det_s[index, :]
Q
qingqing01 已提交
231
    # Enlarge one times
B
baiyfbupt 已提交
232 233
    bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
    det_b = detect_face(image, bt)
B
baiyfbupt 已提交
234

Q
qingqing01 已提交
235
    # Enlarge small image x times for small faces
B
baiyfbupt 已提交
236
    if max_shrink > 2:
B
baiyfbupt 已提交
237
        bt *= 2
B
baiyfbupt 已提交
238 239
        while bt < max_shrink:
            det_b = np.row_stack((det_b, detect_face(image, bt)))
B
baiyfbupt 已提交
240
            bt *= 2
B
baiyfbupt 已提交
241
        det_b = np.row_stack((det_b, detect_face(image, max_shrink)))
B
baiyfbupt 已提交
242

Q
qingqing01 已提交
243
    # Enlarged images are only used to detect small faces.
B
baiyfbupt 已提交
244 245 246 247 248
    if bt > 1:
        index = np.where(
            np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
                       det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
        det_b = det_b[index, :]
Q
qingqing01 已提交
249
    # Shrinked images are only used to detect big faces.
B
baiyfbupt 已提交
250 251 252 253 254 255 256 257
    else:
        index = np.where(
            np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
                       det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
        det_b = det_b[index, :]
    return det_s, det_b


258
def multi_scale_test_pyramid(image, max_shrink):
Q
qingqing01 已提交
259
    # Use image pyramids to detect faces
260 261 262 263 264 265
    det_b = detect_face(image, 0.25)
    index = np.where(
        np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
        > 30)[0]
    det_b = det_b[index, :]

Q
qingqing01 已提交
266
    st = [0.75, 1.25, 1.5, 1.75]
267 268 269
    for i in range(len(st)):
        if (st[i] <= max_shrink):
            det_temp = detect_face(image, st[i])
Q
qingqing01 已提交
270
            # Enlarged images are only used to detect small faces.
271 272 273 274 275
            if st[i] > 1:
                index = np.where(
                    np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
                               det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
                det_temp = det_temp[index, :]
Q
qingqing01 已提交
276
            # Shrinked images are only used to detect big faces.
277 278 279 280 281 282 283 284 285
            else:
                index = np.where(
                    np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
                               det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
                det_temp = det_temp[index, :]
            det_b = np.row_stack((det_b, det_temp))
    return det_b


Q
qingqing01 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def get_shrink(height, width):
    """
    Args:
        height (int): image height.
        width (int): image width.
    """
    # avoid out of memory
    max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
    max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5

    def get_round(x, loc):
        str_x = str(x)
        if '.' in str_x:
            str_before, str_after = str_x.split('.')
            len_after = len(str_after)
            if len_after >= 3:
                str_final = str_before + '.' + str_after[0:loc]
                return float(str_final)
            else:
                return x
B
baiyfbupt 已提交
306

Q
qingqing01 已提交
307
    max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
B
baiyfbupt 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320
    if max_shrink >= 1.5 and max_shrink < 2:
        max_shrink = max_shrink - 0.1
    elif max_shrink >= 2 and max_shrink < 3:
        max_shrink = max_shrink - 0.2
    elif max_shrink >= 3 and max_shrink < 4:
        max_shrink = max_shrink - 0.3
    elif max_shrink >= 4 and max_shrink < 5:
        max_shrink = max_shrink - 0.4
    elif max_shrink >= 5:
        max_shrink = max_shrink - 0.5

    shrink = max_shrink if max_shrink < 1 else 1
    return shrink, max_shrink
B
baiyfbupt 已提交
321 322


Q
qingqing01 已提交
323 324 325
if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)
Q
qingqing01 已提交
326
    config = reader.Settings(data_dir=args.data_dir)
327 328 329 330 331 332 333 334

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    main_program = fluid.Program()
    startup_program = fluid.Program()
    image_shape = [3, 1024, 1024]
    with fluid.program_guard(main_program, startup_program):
        network = PyramidBox(
335 336 337
            data_shape=image_shape,
            sub_network=args.use_pyramidbox,
            is_infer=True)
338 339
        infer_program, nmsed_out = network.infer(main_program)
        fetches = [nmsed_out]
340
        exe.run(startup_program)
341
        fluid.io.load_persistables(
342 343 344 345 346
            exe, args.model_dir, main_program=infer_program)
        # save model and program
        #fluid.io.save_inference_model('pyramidbox_model',
        #    ['image'], [nmsed_out], exe, main_program=infer_program,
        #    model_filename='model', params_filename='params')
Q
qingqing01 已提交
347
    infer(args, config)