train.py 8.8 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
Jiabin Yang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19
import logging
import os
import six
import sys
import time
20

J
JiabinYang 已提交
21 22
import numpy as np
import paddle
23
import paddle.fluid as fluid
24 25 26

from utils.configure import PDConfig
from utils.check import check_gpu, check_version
27
from utils.load import load_dygraph
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

# include task-specific libs
import reader
from model import Transformer, CrossEntropyCriterion, NoamDecay


def do_train(args):
    if args.use_cuda:
        trainer_count = fluid.dygraph.parallel.Env().nranks
        place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id
                                ) if trainer_count > 1 else fluid.CUDAPlace(0)
    else:
        trainer_count = 1
        place = fluid.CPUPlace()

    # define the data generator
    processor = reader.DataProcessor(fpattern=args.training_file,
                                     src_vocab_fpath=args.src_vocab_fpath,
                                     trg_vocab_fpath=args.trg_vocab_fpath,
                                     token_delimiter=args.token_delimiter,
                                     use_token_batch=args.use_token_batch,
                                     batch_size=args.batch_size,
                                     device_count=trainer_count,
                                     pool_size=args.pool_size,
                                     sort_type=args.sort_type,
                                     shuffle=args.shuffle,
                                     shuffle_batch=args.shuffle_batch,
                                     start_mark=args.special_token[0],
                                     end_mark=args.special_token[1],
                                     unk_mark=args.special_token[2],
                                     max_length=args.max_length,
                                     n_head=args.n_head)
    batch_generator = processor.data_generator(phase="train")
    if trainer_count > 1:  # for multi-process gpu training
        batch_generator = fluid.contrib.reader.distributed_batch_reader(
            batch_generator)
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
        args.unk_idx = processor.get_vocab_summary()

67
    with fluid.dygraph.guard(place):
68 69 70 71 72 73 74 75 76
        # set seed for CE
        random_seed = eval(str(args.random_seed))
        if random_seed is not None:
            fluid.default_main_program().random_seed = random_seed
            fluid.default_startup_program().random_seed = random_seed

        # define data loader
        train_loader = fluid.io.DataLoader.from_generator(capacity=10)
        train_loader.set_batch_generator(batch_generator, places=place)
77

78
        # define model
79 80 81 82 83 84 85 86 87 88 89
        transformer = Transformer(
            args.src_vocab_size, args.trg_vocab_size, args.max_length + 1,
            args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model,
            args.d_inner_hid, args.prepostprocess_dropout,
            args.attention_dropout, args.relu_dropout, args.preprocess_cmd,
            args.postprocess_cmd, args.weight_sharing, args.bos_idx,
            args.eos_idx)

        # define loss
        criterion = CrossEntropyCriterion(args.label_smooth_eps)

90
        # define optimizer
91 92 93 94 95 96 97 98 99 100
        optimizer = fluid.optimizer.Adam(
            learning_rate=NoamDecay(args.d_model, args.warmup_steps,
                                    args.learning_rate),
            beta1=args.beta1,
            beta2=args.beta2,
            epsilon=float(args.eps),
            parameter_list=transformer.parameters())

        ## init from some checkpoint, to resume the previous training
        if args.init_from_checkpoint:
101
            model_dict, opt_dict = load_dygraph(
102 103 104 105 106
                os.path.join(args.init_from_checkpoint, "transformer"))
            transformer.load_dict(model_dict)
            optimizer.set_dict(opt_dict)
        ## init from some pretrain models, to better solve the current task
        if args.init_from_pretrain_model:
107
            model_dict, _ = load_dygraph(
108 109 110 111 112
                os.path.join(args.init_from_pretrain_model, "transformer"))
            transformer.load_dict(model_dict)

        if trainer_count > 1:
            strategy = fluid.dygraph.parallel.prepare_context()
113 114
            transformer = fluid.dygraph.parallel.DataParallel(
                transformer, strategy)
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        # the best cross-entropy value with label smoothing
        loss_normalizer = -(
            (1. - args.label_smooth_eps) * np.log(
                (1. - args.label_smooth_eps)) +
            args.label_smooth_eps * np.log(args.label_smooth_eps /
                                           (args.trg_vocab_size - 1) + 1e-20))

        step_idx = 0
        # train loop
        for pass_id in range(args.epoch):
            pass_start_time = time.time()
            batch_id = 0
            for input_data in train_loader():
                (src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
                 trg_slf_attn_bias, trg_src_attn_bias, lbl_word,
                 lbl_weight) = input_data
                logits = transformer(src_word, src_pos, src_slf_attn_bias,
                                     trg_word, trg_pos, trg_slf_attn_bias,
                                     trg_src_attn_bias)

                sum_cost, avg_cost, token_num = criterion(
                    logits, lbl_word, lbl_weight)

                if trainer_count > 1:
                    avg_cost = transformer.scale_loss(avg_cost)
                    avg_cost.backward()
142 143
                    transformer.apply_collective_grads()
                else:
144 145 146
                    avg_cost.backward()

                optimizer.minimize(avg_cost)
J
JiabinYang 已提交
147
                transformer.clear_gradients()
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                if step_idx % args.print_step == 0:
                    total_avg_cost = avg_cost.numpy() * trainer_count

                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                            total_avg_cost - loss_normalizer,
                            np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                            total_avg_cost - loss_normalizer,
                            np.exp([min(total_avg_cost, 100)]),
                            args.print_step / (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

                if step_idx % args.save_step == 0 and step_idx != 0 and (
                        trainer_count == 1
                        or fluid.dygraph.parallel.Env().dev_id == 0):
                    if args.save_model:
                        model_dir = os.path.join(args.save_model,
                                                 "step_" + str(step_idx))
                        if not os.path.exists(model_dir):
                            os.makedirs(model_dir)
                        fluid.save_dygraph(
                            transformer.state_dict(),
                            os.path.join(model_dir, "transformer"))
                        fluid.save_dygraph(
                            optimizer.state_dict(),
                            os.path.join(model_dir, "transformer"))

                batch_id += 1
                step_idx += 1

        time_consumed = time.time() - pass_start_time

        if args.save_model:
            model_dir = os.path.join(args.save_model, "step_final")
            if not os.path.exists(model_dir):
                os.makedirs(model_dir)
            fluid.save_dygraph(transformer.state_dict(),
                               os.path.join(model_dir, "transformer"))
            fluid.save_dygraph(optimizer.state_dict(),
                               os.path.join(model_dir, "transformer"))


if __name__ == "__main__":
    args = PDConfig(yaml_file="./transformer.yaml")
    args.build()
    args.Print()
    check_gpu(args.use_cuda)
    check_version()

    do_train(args)